# AMERICAN LUNG ASSOCIATION® State of the Air: 2003



# **AMERICAN LUNG ASSOCIATION**® State of the Air: 2003



#### ACKNOWLEDGEMENTS

The American Lung Association State of the Air 2003 is the result of the hard work of many people:

Outside the American Lung Association: Allen S. Lefohn of A.S.L. and Associates compiled the data; Celia Vimont wrote much of the report; Deborah Shprentz reviewed the science; Conrad Schneider of the Clean Air Task Force assisted with research; Cindy Wright of CJW Associates developed press materials; Kelly Campbell, Andrew Shane, Matt Averitt, and Shanae Jennings at Publicis Dialog handled the media outreach and marketing; Frank O'Donnell of Clean Air Trust assisted with media preparation; Kristin Lawton and Doug Chuchro at Get Active developed the web site for the report; and Madeline Stanionis, Nick Allen, and Kristin Heil of Donordigital, who developed the e-advocacy outreach.

In the American Lung Association National Office: Paul Billings supervised the work; Diane Maple and Blake Early reviewed and revised the materials; Joe Kirby revised major tables; Josephine Ceselski coordinated field outreach; Janice Nolen was the project director; Elizabeth Lancet, MPH, converted the raw data into meaningful tables and comparisons and reviewed all statistics; Norman Edelman, MD, reviewed the science and health discussions; Susan Rappaport, MPH, reviewed the science, health, and statistics; Marcel Parrilla designed and, consequently, upgraded the presence of the report; Jean Haldorsen supervised production; Todd Whitley directed the web site and e-advocacy development; Victoria Wong also worked on the web site; Joe Fay and Elizabeth Hlinko Margulies supervised the branding component; and Michelle Sawatka directed media outreach.

In the American Lung Association family: All Lung Association field offices reviewed and commented on the data for their states. However, special appreciation goes to these individuals who contributed their expertise about their regions: Bonnie Holmes-Gen of California, Brian Urbaszewski of Chicago, Kevin Stewart of Pennsylvania, Elliot Levinson of Michigan, Ed Miller and Norman Anderson of Maine, Susannah Fuchs of Eastern Missouri, Tim Cunningham of Colorado, and Barbara McKinnon, of New Brunswick. Great appreciation goes to Kevin Stewart of Pennsylvania, who painstakingly reviewed virtually every page prior to publication, as well as contributing important suggestions to the added materials.

Finally, great appreciation goes to the members of the State and Territorial Air Pollution Program Administrators and the Association of Local Air Pollution Control Administrators who, along with their Executive Director Bill Becker and Amy Royden, strove to make this report better through their comments, review and concerns. They are our partners in the fight against air pollution and this report should in no way be construed as a comment on their work.

The American Lung Association assumes sole responsibility for the content of the American Lung Association State of the Air 2003.

American Lung Association 61 Broadway New York, NY 10006 Phone: (212) 315-8700 Fax: (212) 315-8870

www.lungusa.org

American Lung Association 1150 18th St., NW, Suite 900 Washington, DC 20036-4502 Phone: (202) 785-3355 Fax: (202) 452-1805

# TABLE OF CONTENTS

| EXECUTIVE SUMMARY                                                                                            | 1  |
|--------------------------------------------------------------------------------------------------------------|----|
| INTRODUCTION                                                                                                 | 3  |
| GRADING THE RISK                                                                                             | 4  |
|                                                                                                              |    |
| Table 1: Estimated Populations at Risk by Grading Level                                                      | 4  |
| Table 2: People at Risk in America's 25 Most Ozone- Polluted Cities                                          | 6  |
| Table 3: People at Risk in America's 25 Most Ozone- Polluted Counties                                        | 7  |
| Table 4: Counties with the Worst Ozone Air Pollution in Each State                                           | 8  |
| Table 5: Metropolitan Areas with the Least Ozone Air Pollution                                               | 9  |
| Table 6: Counties with No Monitored Ozone Air Pollution<br>in Unhealthy Ranges in Each State                 | 10 |
| NATIONWIDE AND REGIONAL ANALYSIS                                                                             | 13 |
| Region 1: Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, and Connecticut                        | 14 |
| Region 2: New York, New Jersey, and Puerto Rico                                                              | 14 |
| Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br>West Virginia, and Virginia                 | 14 |
| Region 4: Kentucky, North Carolina, South Carolina, Georgia,<br>Tennessee, Alabama, Mississippi, and Florida | 14 |
| Region 5: Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota                                        | 14 |
| Region 6: Texas, Oklahoma, Arkansas, Louisiana, and New Mexico                                               | 14 |
| Region 7: Nebraska, Kansas, Iowa, and Missouri                                                               | 14 |
| Region 8: Montana, North Dakota, South Dakota, Wyoming, Utah, and Colorado                                   | 14 |
| Region 9: California, Nevada, Arizona, and Hawaii                                                            | 15 |
| Region 10: Washington, Oregon, Idaho, and Alaska                                                             | 15 |
| THE HEALTH EFFECTS OF OZONE                                                                                  | 17 |
| The Danger of Ozone                                                                                          | 17 |
| Children at Special Risk                                                                                     | 17 |
| The Elderly and Ozone                                                                                        | 19 |
| Ozone and the Air Quality Index                                                                              | 19 |

| ROTECTING THE NATION FROM OZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Ozone: Where It Comes From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                        |
| The Clean Air Act: Under Fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                        |
| <b>Failure to Follow Clean Air Act Requirements</b><br>Delay in Enforcing the Standards<br>Complying With the Standards<br>Early Action Compacts<br>Failure to Review the Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                        |
| <b>Threats to Roll Back Clean Air Act Provisions</b><br>New Source Review<br>Power Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                        |
| Real Steps to Clean Up Power Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                        |
| New Action Needed to Clean Up the Dirtiest Diesel<br>The Problems with Diesel<br>Progress on Diesel<br>The Dirtiest Diesel: Heavy Equipment and other Diesel Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                        |
| NDNOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
| PPENDIX A: DESCRIPTION OF METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                        |
| PPENDIX A: DESCRIPTION OF METHODOLOGY PPENDIX B: REGIONAL DIFFERENCES IN OZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29<br>33                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                        |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>33</b><br>38                                           |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut<br>Region 2: New York, New Jersey, and Puerto Rico<br>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>33</b><br>38<br>39                                     |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut<br>Region 2: New York, New Jersey, and Puerto Rico<br>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br>West Virginia, and Virginia<br>Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee,                                                                                                                                                                                                                                                                                                                                                                     | <b>33</b><br>38<br>39<br>40                               |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut<br>Region 2: New York, New Jersey, and Puerto Rico<br>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br>West Virginia, and Virginia<br>Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee,<br>Alabama, Mississippi, and Florida                                                                                                                                                                                                                                                                                                                                | <b>33</b><br>38<br>39<br>40<br>41                         |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut<br>Region 2: New York, New Jersey, and Puerto Rico<br>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br>West Virginia, and Virginia<br>Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee,<br>Alabama, Mississippi, and Florida<br>Region 5: Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota                                                                                                                                                                                                                                                       | <b>33</b><br>38<br>39<br>40<br>41<br>41<br>42             |
| PPENDIX B: REGIONAL DIFFERENCES IN OZONE<br>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br>Rhode Island, and Connecticut<br>Region 2: New York, New Jersey, and Puerto Rico<br>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br>West Virginia, and Virginia<br>Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee,<br>Alabama, Mississippi, and Florida<br>Region 5: Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota<br>Region 6: Texas, Oklahoma, Arkansas, Louisiana, and New Mexico                                                                                                                                                                                     | <b>33</b><br>38<br>39<br>40<br>41<br>41<br>42<br>43       |
| <ul> <li>PPENDIX B: REGIONAL DIFFERENCES IN OZONE</li> <li>Region 1: Maine, Vermont, New Hampshire, Massachusetts,<br/>Rhode Island, and Connecticut</li> <li>Region 2: New York, New Jersey, and Puerto Rico</li> <li>Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C.,<br/>West Virginia, and Virginia</li> <li>Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee,<br/>Alabama, Mississippi, and Florida</li> <li>Region 5: Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota</li> <li>Region 6: Texas, Oklahoma, Arkansas, Louisiana, and New Mexico</li> <li>Region 7: Nebraska, Kansas, Iowa, and Missouri</li> <li>Region 8: Montana, North Dakota, South Dakota, Wyoming,</li> </ul> | <b>33</b><br>38<br>39<br>40<br>41<br>41<br>42<br>43<br>44 |

#### **APPENDIX C: ADDITIONAL COMPARISON TABLES**

Table C-1: Comparison of Number of Counties and High Ozone Days, State of the Air Reports 2002-2003

Table C-2: Cities Deleted from the List of the 25 Most Ozone-Polluted Cities Between the 2002 and 2003 State of the Air Reports

Table C-3: Counties Deleted from the Lists of the 25 Most Ozone-Polluted Counties Between the 2002 and 2003 State of the Air Reports

#### **APPENDIX D: STATE DATA TABLES**

| Alabama52               | Louisiana98       | Ohio140           |
|-------------------------|-------------------|-------------------|
| Alaska54                | Maine102          | Oklahoma144       |
| Arizona56               | Maryland104       | Oregon146         |
| Arkansas58              | Massachusetts106  | Pennsylvania148   |
| California60            | Michigan108       | Rhode Island152   |
| Colorado66              | Minnesota112      | South Carolina154 |
| Connecticut68           | Mississippi114    | South Dakota156   |
| Delaware70              | Missouri116       | Tennessee158      |
| District of Columbia72  | Montana118        | Texas160          |
| Florida74               | Nebraska120       | Utah164           |
| Georgia78               | Nevada122         | Vermont166        |
| Hawaii80                | New Hampshire124  | Virginia168       |
| Idaho                   | New Jersey126     | Washington170     |
| Illinois84<br>Indiana86 | New Mexico128     | West Virginia172  |
| Indiana                 | New York          | Wisconsin174      |
| Kansas92                |                   |                   |
| Kansas                  | North Carolina134 | Wyoming178        |
| Kennucky                | North Dakota138   |                   |

#### V

51

# million Americans, nearly half the nation, are living in counties with an unhealthy amount of ozone.

1

# EXECUTIVE SUMMARY

*The American Lung Association State of the Air: 2003* includes data from 1999-2001. This represents the most recent available complete ozone monitoring data that has been fully reviewed by the EPA for quality assurance at the time this report was prepared.

At levels commonly found in the air in many American cities during summer months, ozone can damage the lungs and airways, causing them to become inflamed, reddened and swollen. This response can cause coughing, burning sensations and shortness of breath. Ozone increases the risk of asthma attacks in people with asthma.

*The American Lung Association State of the Air: 2003* finds that many millions of Americans continue to breathe unhealthy amounts of ozone:

- Nearly half of the US population—137,206,767 (49%)—lives in areas with unhealthy levels of ozone despite modest improvements in air quality monitored between 1999-2001.
- Over five million fewer Americans—5,462,079 lived in counties that received an F grade compared with last year's report, despite the inclusion of data from 14 additional counties.
- Over half of all monitored counties (55.5 percent) received an F rating.
- Over 7.4 million adults with asthma and 2 million children suffering from asthma attacks live in counties that received an F grade in ozone air pollution. Those totals represent 70 percent of the 10.6 million American adults with asthma and 69 percent of the 2.8 million children suffering from asthma attacks who live in counties with an ozone monitor.
- Over 1.5 million Americans with emphysema live in counties that received an F rating in ozone air pollution out of the 2.3 million Americans with emphysema who live in those monitored counties. Nearly 4.7 million Americans with chronic bronchitis live in those counties receiving an F, out of the nearly 6.8 million Americans with chronic bronchitis living in counties with monitors.
- Of the nation's over-65 population who live in these monitored counties, 68 percent live in counties that received an F rating in ozone air pollution, while 70 percent of children under 14 who live in monitored counties reside in counties with a failing grade.



3

# **INTRODUCTION**

Each year, the American Lung Association assesses the toll that ozone air pollution places on our nation's ability to breathe. This year, the *American Lung Association State of the Air: 2003* finds that many Americans breathed in less ozone air pollution between 1999 and 2001, compared with the previous two three-year periods (1998-2000 and 1997-1999). This is good news—but not nearly good enough. *The American Lung Association State of the Air: 2003* finds that, between 1999 and 2001, there were still 137 million Americans—nearly half the nation—who were living in counties with an unhealthy amount of ozone.

The main ingredient in smog, ozone is a potent respiratory irritant which poses an especially large danger during the summer months in urban areas. Children, the elderly, and those with chronic lung disease are at greatest risk of suffering serious breathing problems caused by ozone.

The improvement in ozone levels seen in 1999-2001 is likely due to favorable weather conditions rather than significant new measures to reduce pollution. Clear signs of that are the early reports of extremely high ozone levels in 2002, a period not covered by this report<sup>1</sup>. In fact, much air pollution cleanup has been stalled during the past five years because the U.S. Environmental Protection Agency (EPA) has failed to take steps to enforce the more protective ozone standard adopted in 1997. This tighter standard would prevent tens of thousands of asthma attacks and hospitalizations and other illnesses for asthma and other respiratory diseases and millions of days of missed work and school. Not only has this more protective standard not been enforced, but the Clean Air Act is itself in danger of being weakened by the current Administration, despite the law's record of effectiveness which has led to a significant reduction of almost all major air pollutants since 1970.

As an indication of how far we still need to go to protect our citizens from dirty air, over half (55.8%) of counties monitored for ozone had an unacceptably high number of high ozone days.

In 2000, the American Lung Association initiated its *State of the Air* annual assessment to provide citizens with easy-to-understand reports on the quality of the

air in their communities that are based on concrete data and sound science. Counties are assigned grades ranging from A through F based on how often their air quality crosses into the unhealthful categories of EPA's Air Quality Index for ground-level ozone (smog) pollution. The Air Quality Index is, in turn, based on the national air quality standards. The air quality standard for ozone used as the basis for this report, 0.08 parts per million averaged over an eight-hour period, was adopted by the EPA in 1997 based on the most recent health effects information. The grades in this report are assigned based on the quality of the air in areas, and do not reflect an assessment of efforts to implement controls that improve air quality. The grades should not be interpreted as an evaluation of the work of any state or local air pollution control program.

Ozone is not the only air pollutant that endangers the lungs. Of the long list of lung hazards, the other most pervasive pollutant is particulate matter, or soot. Particulate matter air pollution is especially harmful to people with lung disease such as asthma and chronic obstructive pulmonary disease (COPD), which includes chronic bronchitis and emphysema, as well as people with heart disease. Exposure to particulate air pollution can shorten human life by months or years, as well as trigger asthma attacks and cause wheezing, coughing, and respiratory irritation in individuals with sensitive airways.

A new nationwide monitoring system is tracking the smallest and most dangerous of the fine particles, those with diameter of 2.5 microns or less, which lodge deep inside the lung when inhaled. Data from those monitors are not included in this report because many of the monitors had problems in the first year they were operating. This means that while some areas have three full years of reliable data, others do not. Because of this discrepancy, the American Lung Association will wait until 2004 to incorporate fine particle data into this report, when all areas will have three years of comprehensive data.

It is important to note that many areas have unhealthy levels of both pollutants—ozone and fine particles. However, some areas that have no or few unhealthy ozone days may still have unhealthy air from particulates.

|                  |             |              | Chronic          | Diseases           |           |
|------------------|-------------|--------------|------------------|--------------------|-----------|
| R                | eport Years | Adult Asthma | Pediatric Asthma | Chronic Bronchitis | Emphysema |
|                  | 2000        | (1)          | (1)              | (1)                | (1)       |
|                  | 2001        | (2)          | 116,835          | 284,546            | 93,808    |
| Grade A          | 2002        | 465,195      | 115,930          | 280,766            | 88,531    |
| (0.0)            | 2003        | 691,967      | 175,124          | 433,619            | 142,516   |
|                  | 2000        | (1)          | (1)              | (1)                | (1)       |
|                  | 2001        | (2)          | 131,951          | 312,045            | 102,872   |
| Grade B          | 2002        | 425,752      | 111,256          | 254,036            | 79,264    |
| (0.3-0.9)        | 2003        | 533,923      | 149,639          | 356,631            | 123,548   |
|                  | 2000        | (1)          | (1)              | (1)                | (1)       |
|                  | 2001        | (2)          | 134,775          | 351,792            | 115,972   |
| Grade C          | 2002        | 600,264      | 149,867          | 393,101            | 135,050   |
| (1.0-2.0)        | 2003        | 913,157      | 246,868          | 632,240            | 218,848   |
|                  | 2000        | (1)          | (1)              | (1)                | (1)       |
|                  | 2001        | (2)          | 132,024          | 333,759            | 110,029   |
| Grade D          | 2002        | 600,649      | 138,900          | 353,148            | 114,780   |
| (2.1-3.2)        | 2003        | 596,558      | 173,687          | 373,511            | 120,636   |
|                  | 2000        | (1)          | (1)              | (1)                | (1)       |
|                  | 2001        | (2)          | 1,944,477        | 4,785,438          | 1,577,613 |
| Grade F          | 2002        | 7,661,492    | 1,936,210        | 4,684,114          | 1,474,141 |
| (3.3+)           | 2003        | 7,432,080    | 1,966,552        | 4,681,710          | 1,545,411 |
| Population       | 2000        | (1)          | (1)              | (1)                | (1)       |
| Living in        | 2000        | (1)          | 2,567,435        | 6,337,115          | 2,089,149 |
| Counties<br>with | 2002        | 10,213,597   | 2,575,376        | 6,272,713          | 1,992,034 |
| Monitors         | 2002        | 10,619,855   | 2,832,011        | 6,779,598          | 2,255,874 |

(1) Chronic disease estimates for 2000 and 2001 CANNOT BE COMPARED TO EACH OTHER. Between the release dates of these two publications, the National Health Interview Survey completely redesigned its questionnaire and oblierated all trends. Therefore, estimates prior to 1997 cannot be compared with later estimates. The 2000 estimates were obtained from the 1996 NHIS survey while the 2001 estimates were obtained from the revised 1998 NHIS survey.

(2) Adult asthma disease estimates for 2001 and 2002 CANNOT BE COMPARED TO EACH OTHER. The 2001 estimate utilizes the National Health Interview Survey questionnaire while the 2002 estimate utilizes the Behavioral Risk Factor Surveillance System Survey.

|                         | Age Gro      | ups         |                     | High (                | Dzone  | Da    | ys     |
|-------------------------|--------------|-------------|---------------------|-----------------------|--------|-------|--------|
|                         | 14 and Under | 65 and Over | Total<br>Population | Number<br>of Counties | Orange | Red   | Purple |
|                         | 2,296,548    | 1,251,960   | 10,477,773          | 62                    | 0      | 0     | 0      |
|                         | 1,824,279    | 1,015,492   | 8,453,938           | 55                    | 0      | 0     | 0      |
| Grade A                 | 1,823,326    | 1,027,969   | 8,542,407           | 56                    | 0      | 0     | 0      |
| (0.0)                   | 2,629,652    | 1,466,426   | 12,575,124          | 68                    | 0      | 0     | 0      |
|                         | 1,865,757    | 1,179,695   | 8,582,029           | 48                    | 68     | 0     | 0      |
|                         | 2,059,705    | 1,096,632   | 9,343,164           | 41                    | 57     | 1     | 0      |
| Grade B                 | 1,745,726    | 907,336     | 7,856,880           | 39                    | 51     | 0     | 0      |
| (0.3-0.9)               | 2,243,840    | 1,351,997   | 10,437,026          | 53                    | 78     | 0     | 0      |
|                         | 2,692,794    | 1,824,144   | 12,856,894          | 59                    | 256    | 3     | 0      |
|                         | 2,112,737    | 1,514,827   | 10,269,797          | 58                    | 254    | 4     | 0      |
| Grade C                 | 2,347,471    | 1,683,397   | 11,588,825          | 61                    | 266    | 5     | 0      |
| (1.0-2.0)               | 3,710,667    | 2,401,032   | 18,019,904          | 79                    | 352    | 4     | 0      |
|                         | 2,206,390    | 1,453,631   | 10,459,616          | 54                    | 414    | 12    | 0      |
|                         | 2,067,946    | 1,334,036   | 9,821,670           | 41                    | 314    | 12    | 0      |
| Grade D                 | 2,192,859    | 1,376,837   | 10,578,028          | 48                    | 357    | 10    | 0      |
| (2.1-3.2)               | 2,535,980    | 1,207,485   | 11,358,912          | 33                    | 250    | 10    | 0      |
|                         | 29,045,221   | 15,944,372  | 132,494,679         | 333                   | 9,519  | 1,335 | 219    |
| Crada E                 | 30,680,052   | 17,120,347  | 141,793,488         | 382                   | 12,180 | 1,488 | 209    |
| Grade F                 | 30,742,058   | 17,191,083  | 142,668,846         | 391                   | 11,952 | 1,373 | 182    |
| (3.3+)                  | 29,841,544   | 16,144,931  | 137,206,767         | 384                   | 10,123 | 1,088 | 107    |
| Population<br>Living in | 40,343,997   | 22,992,964  | 185,164,054         | 678                   | 10,257 | 1,350 | 219    |
| Counties                | 40,423,987   | 23,103,750  | 187,627,908         | 660                   | 12,805 | 1,505 | 209    |
| with                    | 40,779,165   | 23,362,199  | 190,463,367         | 678                   | -      | 1,388 | 182    |
| Monitors                | 42,771,423   | 23,705,025  | 198,216,448         | 692                   | 10,803 | 1,102 | 107    |

5

#### Table 2: People at Risk in America's 25 Most Ozone-Polluted Cities

#### **At-Risk Groups** in America's 25 Most Polluted Cities

| Metropolitan<br>Statistical Areas                             | Rank<br>2003 |    |    | Rank<br>2000 | Total<br>Population | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|---------------------------------------------------------------|--------------|----|----|--------------|---------------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Los Angeles-Riverside-Orange County,                          |              |    |    |              |                     | 0.055.040       |                | 050.007             |                 | 500 570               | 4/0.050   |
| CA CMSA                                                       | 1            | 1  | 1  | 1            | 16,373,645          | 3,955,219       | 1,626,663      | 258,327             | 831,760         | 528,572               | 162,952   |
| Fresno, CA MSA                                                | 2            | 3  | 3  | 3            | 922,516             | 244,351         | 92,805         | 16,197              | 44,810          | 28,598                | 9,037     |
| Bakersfield, CA MSA                                           | 3            | 2  | 2  | 2            | 661,645             | 176,910         | 62,054         | 11,689              | 31,998          | 20,330                | 6,250     |
| Visalia-Tulare-Porterville, CA MSA                            | 4            | 4  | 4  | 4            | 368,021             | 103,425         | 35,917         | 6,871               | 17,349          | 11,078                | 3,503     |
| Houston-Galveston-Brazoria, TX CMSA                           | 5            | 5  | 5  | 5            | 4,669,571           | 1,136,281       | 360,308        | 74,988              | 202,727         | 147,772               | 41,960    |
| Sacramento-Yolo, CA CMSA                                      | 6            | 10 | 12 | 11           | 1,796,857           | 406,444         | 203,551        | 26,911              | 93,425          | 60,425                | 19,841    |
| Merced, CA MSA                                                | 7            | 7  | 13 | 10           | 210,554             | 60,546          | 20,004         | 4,019               | 9,808           | 6,248                 | 1,959     |
| Atlanta, GA MSA                                               | 8            | 6  | 6  | 9            | 4,112,198           | 926,251         | 310,703        | 60,592              | 217,423         | 133,668               | 37,034    |
| Knoxville, TN MSA                                             | 9            | 8  | 9  | 12           | 687,249             | 129,331         | 92,414         | 8,586               | 36,394          | 24,986                | 8,687     |
| Charlotte-Gastonia-Rock Hill, NC-SC MSA                       | 10           | 9  | 8  | 8            | 1,499,293           | 322,768         | 152,648        | 21,069              | 70,937          | 50,198                | 15,683    |
| Washington-Baltimore, DC-MD-VA-WV PMSA                        | 11           | 11 | 7  | 7            | 7,608,070           | 1,617,956       | 772,176        | 106,339             | 400,151         | 260,093               | 81,465    |
| Dallas-Fort Worth, TX CMSA                                    | 12           | 16 | 14 | 14           | 5,221,801           | 1,232,855       | 420,898        | 80,909              | 229,901         | 167,011               | 47,398    |
| Philadelphia-Wilmington-Atlantic City,<br>PA-NJ-DE-MD CMSA    | 13           | 14 | 10 | 13           | 6,188,463           | 1,309,282       | 833,038        | 86,667              | 327,894         | 216,561               | 75,836    |
| New York-Northern New Jersey-Long Island,<br>CT-NJ-NY-PA CMSA | 14           | 20 | 15 | 16           | 21,199,865          | 4,427,393       | 2,684,988      | 290,182             | 1,135,343       | 741,521               | 251,794   |
| Phoenix-Mesa, AZ MSA                                          | 15           | 12 | 17 | 19           | 3,251,876           | 739,916         | 388,150        | 48,282              | 198,810         | 109,068               | 35,970    |
| Baton Rouge, LA MSA                                           | 16           | 17 | 24 | N/A          | 602,894             | 135,277         | 56,733         | 9,084               | 23,189          | 19,796                | 5,984     |
| Greensboro-Winston-Salem-High Point,<br>NC MSA                | 17           | 21 | 25 | N/A          | 1,251,509           | 254,023         | 156,294        | 16,629              | 59,872          | 43,535                | 14,854    |
| Memphis, TN-AR-MS MSA                                         | 18           | 19 | 22 | 23           | 1,135,614           | 270,054         | 112,994        | 17,792              | 53,690          | 37,117                | 11,628    |
| Birmingham, AL MSA                                            | 18           | 21 | 33 | 24           | 921,106             | 192,376         | 116,600        | 12,787              | 43,852          | 32,162                | 10,980    |
| San Diego, CA MSA                                             | 20           | 15 | 17 | 6            | 2,813,833           | 611,119         | 313,750        | 40,018              | 148,788         | 94,794                | 30,028    |
| Nashville, TN MSA                                             | 21           | 18 | 16 | 18           | 1,231,311           | 255,887         | 123,414        | 16,897              | 61,695          | 42,005                | 12,913    |
| Raleigh-Durham-Chapel Hill, NC MSA                            | 22           | 13 | 10 | 17           | 1,187,941           | 245,007         | 102,574        | 15,907              | 56,696          | 39,287                | 11,336    |
| Allentown-Bethlehem-Easton, PA MSA                            | 23           | 35 | 28 | N/A          | 637,958             | 124,212         | 102,330        | 8,294               | 35,728          | 23,342                | 8,776     |
| Macon, GA MSA                                                 | 24           | 24 | 26 | N/A          | 322,549             | 73,081          | 35,883         | 4,840               | 16,920          | 10,825                | 3,531     |
| Louisville, KY-IN MSA                                         | 25           | 29 | 25 |              | 1,025,598           | 212,220         | 129,105        | 14,055              | 62,944          |                       | 12,283    |

#### Notes:

(1) Sensitive populations for all counties within their respective MSAs were included in total estimates.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.

(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county

(4) Adult asthma estimates (US Census). (4) Adult asthma estimates are for those 18 years and older and represents the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

(5) Chronic bronchitis estimates are for adults 18 and over who had been diagnosed with this disease within 2000 based on national rates (NHIS) applied to county population estimates (US Census). (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census). (7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

|                |       |           |           |           |           | At-R                | isk G           | iroup          | S                   |                 |                       |           | Hig<br>in U | <b>h</b><br>nheal | <b>Ozo</b><br>thy Ra | ne<br>anges,    | <b>Days</b><br>1999-01 |
|----------------|-------|-----------|-----------|-----------|-----------|---------------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|-------------|-------------------|----------------------|-----------------|------------------------|
| County         | State | Rank 2003 | Rank 2002 | Rank 2001 | Rank 2000 | Total<br>Population | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema | Orange      | Purple            | Red                  | Weighted<br>Avg | Grade                  |
| San Bernardino | CA    | 1         | 1         | 1         | 1         | 1,709,434           | 465,138         | 146,459        | 30,528              | 82,110          | 51,903                | 15,430    | 179         | 58                | 22                   | 103.3           | F                      |
| Fresno         | CA    | 2         | 3         | 4         | 4         | 799,407             | 214,255         | 79,209         | 14,180              | 38,632          | 24,612                | 7,729     | 202         | 53                | 1                    | 94.5            | F                      |
| Kern           | CA    | 3         | 2         | 3         | 3         | 661,645             | 176,910         | 62,054         | 11,689              | 31,998          | 20,330                | 6,250     | 219         | 40                | 0                    | 93.0            | F                      |
| Tulare         | CA    | 4         | 5         | 5         | 6         | 368,021             | 103,425         | 35,917         | 6,871               | 17,349          | 11,078                | 3,503     | 216         | 19                | 0                    | 81.5            | F                      |
| Riverside      | CA    | 5         | 4         | 2         | 2         | 1,545,387           | 394,983         | 195,964        | 25,919              | 77,032          | 49,931                | 17,278    | 160         | 44                | 4                    | 78.0            | F                      |
| Harris         | ТΧ    | 6         | 6         | 6         | 8         | 3,400,5788          | 28,962          | 252,895        | 54,446              | 147,799         | 106,958               | 29,680    | 80          | 44                | 11                   | 56.0            | F                      |
| Los Angeles    | CA    | 7         | 8         | 8         | 5         | 9,519,338           | 2,263,330       | 926,673        | 147,539             | 486,627         | 308,088               | 93,587    | 82          | 20                | 4                    | 40.0            | F                      |
| El Dorado      | CA    | 8         | 14        | 18        | 17        | 156,299             | 33,364          | 19,334         | 2,256               | 8,267           | 5,519                 | 1,946     | 96          | 10                | 0                    | 37.0            | F                      |
| Merced         | CA    | 9         | 9         | 23        | 16        | 210,554             | 60,546          | 20,004         | 4,019               | 9,808           | 6,248                 | 1,959     | 97          | 9                 | 0                    | 36.8            | F                      |
| Kings          | CA    | 10        | 11        | 21        | 9         | 129,461             | 31,574          | 9,557          | 2,075               | 6,492           | 3,991                 | 1,062     | 87          | 7                 | 0                    | 32.5            | F                      |
| Fulton         | GA    | 11        | 7         | 7         | 13        | 816,006             | 169,066         | 68,990         | 11,021              | 44,434          | 27,362                | 7,741     | 60          | 15                | 4                    | 30.2            | F                      |
| Sevier         | TN    | 12        | 10        | 12        | 19        | 71,170              | 13,568          | 8,995          | 905                 | 3,756           | 2,588                 | 893       | 79          | 5                 | 0                    | 28.8            | F                      |
| Nevada         | CA    | 13        | 28        | 50        | 35        | 92,033              | 16,986          | 16,049         | 1,177               | 5,113           | 3,527                 | 1,423     | 77          | 4                 | 0                    | 27.7            | F                      |
| Sacramento     | CA    | 14        | 20        | 33        | 20        | 1,223,499           | 283,266         | 135,875        | 18,669              | 63,132          | 40,639                | 13,188    | 67          | 7                 | 1                    | 26.5            | F                      |
| Ventura        | CA    | 15        | 21        | 14        | 7         | 753,197             | 179,707         | 76,804         | 11,848              | 38,360          | 24,712                | 7,862     | 72          | 6                 | 0                    | 26.3            | F                      |
| Rowan          | NC    | 15        | 22        | 19        | N/A       | 130,340             | 27,030          | 18,205         | 1,779               | 6,185           | 4,554                 | 1,632     | 65          | 8                 | 1                    | 26.3            | F                      |
| Placer         | CA    | 17        | 31        | 60        | 37        | 248,399             | 54,409          | 32,560         | 3,636               | 13,082          | 8,671                 | 3,082     | 68          | 5                 | 0                    | 25.2            | F                      |
| Anne Arundel   | MD    | 18        | 15        | 10        | 11        | 489,656             | 103,739         | 48,820         | 6,837               | 26,377          | 16,801                | 5,268     | 58          | 10                | 0                    | 24.3            | F                      |
| Mecklenburg    | NC    | 19        | 12        | 11        | 12        | 695,454             | 148,639         | 59,724         | 9,636               | 32,990          | 22,830                | 6,572     | 58          | 8                 | 1                    | 24.0            | F                      |
| Tarrant        | ТΧ    | 19        | 37        | 46        | 46        | 1,446,219           | 342,240         | 120,585        | 22,478              | 63,595          | 46,384                | 13,374    | 57          | 6                 | 3                    | 24.0            | F                      |
| DeKalb         | GA    | 21        | 17        | 27        | 29        | 665,865             | 138,468         | 53,224         | 9,068               | 36,161          | 22,064                | 6,054     | 44          | 12                | 3                    | 22.7            | F                      |
| Henry          | GA    | 22        | N/A       | N/A       | N/A       | 119,341             | 29,621          | 8,824          | 1,928               | 6,090           | 3,769                 | 1,061     | 44          | 11                | 5                    | 23.5            | F                      |
| Rockdale       | GA    | 22        | 13        | 9         | 14        | 70,111              | 15,762          | 6,456          | 1,067               | 3,663           | 2,335                 | 725       | 42          | 15                | 3                    | 23.5            | F                      |
| Camden         | NJ    | 24        | 27        | 16        | 21        | 508,932             | 113,309         | 63,769         | 7,529               | 23,465          | 17,392                | 5,964     | 48          | 14                | 0                    | 23.0            | F                      |
| Harford        | MD    | 25        | 50        | 30        | 32        | 218,590             | 51,113          | 22,160         | 3,371               | 11,344          | 7,295                 | 2,348     | 42          | 12                | 2                    | 21.3            | F                      |

#### Table 3: People at Risk in America's 25 Most Ozone-Polluted Counties

(1) Total represents the at-risk populations in counties with ozone monitors- it does not represent the entire states' sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.

(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represents the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

(5) Chronic bronchitis estimates are for adults 18 and over who had been diagnosed with this disease within 2000 based on national rates (NHIS) applied to county population estimates (US Census). (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

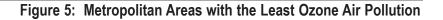
(9) The Weighted Average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+

7

G


#### Table 4: Counties with the Worst Ozone Air Pollution in Each State

#### **High Ozone Days** in Unhealthy Ranges, 1998-2000

| County               | ST  | Metropolitan Statistical Area                                              | Orange   | Red    | Purple | Weighted<br>Avg (1) | Grade |
|----------------------|-----|----------------------------------------------------------------------------|----------|--------|--------|---------------------|-------|
|                      |     |                                                                            |          | _      | _      |                     | _     |
| Shelby               | AL  | Birmingham, AL MSA                                                         | 44       | 5      | 0      | 17.2                | F     |
| Maricopa             | AZ  | Phoenix-Mesa, AZ MSA                                                       | 56       | 0      | 0      | 18.7                | F     |
| Crittenden           | AR  | Memphis, TN-AR-MS MSA                                                      | 29       | 1      | 0      | 10.2                | F     |
| San Bernardino       | CA  | Riverside-San Bernardino, CA PMSA                                          | 179      | 58     | 22     | 103.3               | F     |
| Jefferson            | CO  | Denver, CO CMSA                                                            | 6        | 0      | 0      | 2.0                 | С     |
| Fairfield            | СТ  | Bridgeport, CT PMSA; Danbury, CT PMSA                                      | 38       | 12     | 2      | 20.0                | F     |
| New Castle           | DE  | Wilmington-Newark, DE-MD PMSA                                              | 37       | 6      | 0      | 15.3                | F     |
| District of Columbia | DC  | Washington, DC-MD-VA-WV PMSA                                               | 35       | 4      | 0      | 13.7                | F     |
| Escambia             | FL  | Pensacola, FL MSA                                                          | 24       | 1      | 0      | 8.5                 | F     |
| Fulton               | GA  | Atlanta, GA MSA                                                            | 60       | 15     | 4      | 30.2                | F     |
| Cook                 | IL  | Chicago, IL PMSA                                                           | 22       | 0      | 0      | 7.3                 | F     |
| Hancock              | IN  | Indianapolis, IN MSA                                                       | 27       | 0      | 0      | 9.0                 | F     |
| Scott                | IA  | Davenport-Moline-Rock Island, IA-IL MSA                                    | 4        | 0      | 0      | 1.3                 | С     |
| Linn                 | KS  | N/A                                                                        | 6        | 0      | 0      | 2.0                 | С     |
| Sedgwick             | KS  | Wichita, KS MSA                                                            | 6        | 0      | 0      | 2.0                 | С     |
| Sumner               | KS  | N/A                                                                        | 6        | 0      | 0      | 2.0                 | С     |
| Oldham               | KY  | Louisville, KY-IN MSA                                                      | 39       | 3      | 0      | 14.5                | F     |
| East Baton Rouge     | LA  | Baton Rouge, LA MSA                                                        | 44       | 7      | 0      | 18.2                | F     |
| Hancock              | ME  | N/A                                                                        | 17       | 2      | 0      | 6.7                 | F     |
| Anne Arundel         | MD  | Baltimore, MD PMSA                                                         | 58       | 10     | 0      | 24.3                | F     |
| Barnstable           | MA  | Barnstable-Yarmouth, MA MSA                                                | 21       | 6      | 1      | 10.7                | F     |
| Muskegon             | MI  | Grand Rapids-Muskegon-Holland, MI MSA                                      | 28       | 2      | 1      | 11.0                | F     |
| DeSoto               | MS  | Memphis, TN-AR-MS MSA                                                      | 18       | 1      | 0      | 6.5                 | F     |
| St. Charles          | MO  | St. Louis, MO-IL MSA                                                       | 35       | 1      | 1      | 12.8                | F     |
| Clark                | NV  | Las Vegas, NV-AZ MSA                                                       | 7        | 0      | 0      | 2.3                 | D     |
| Hillsborough         | NH  | Lowell, MA-NH PMSA; Manchester, NH PMSA                                    | 15       | 1      | 0      | 5.5                 | F     |
| Camden               | NJ  | Philadelphia, PA-NJ PMSA                                                   | 48       | 14     | 0      | 23.0                | F     |
| Doña Ana             | NM  | Las Cruces, NM MSA                                                         | 40       | 0      | 0      | 23.0                | C     |
|                      | NY  | -                                                                          |          |        | 2      | 2.0<br>14.2         | F     |
| Richmond             | NC  | New York, NY PMSA                                                          | 31<br>65 | 5<br>8 | 2      | 26.3                | F     |
| Rowan                |     | Charlotte-Gastonia-Rock Hill, NC-SC MSA                                    | 65<br>37 |        |        |                     | F     |
| Clinton              | OH  | N/A                                                                        |          | 3      | 0      | 13.8                |       |
| Tulsa                | OK  | Tulsa, OK MSA                                                              | 27       | 1      | 0      | 9.5                 | F     |
| Bucks                | PA  | Philadelphia, PA-NJ PMSA                                                   | 41       | 11     | 2      | 20.5                | F     |
| Washington           | RI  | New London-Norwich, CT-RI MSA<br>Providence-Fall River-Warwick, RI-MA MSA; | 21       | 4      | 1      | 9.7                 | F     |
| Spartanburg          | SC  | Greenville-Spartanburg-Anderson, SC MSA                                    | 27       | 1      | 0      | 9.5                 | F     |
| Sevier               | TN  | Knoxville, TN MSA                                                          | 79       | 5      | 0      | 28.8                | F     |
| Harris               | TX  | Houston, TX PMSA                                                           | 80       | 44     | 11     | 56.0                | F     |
| Salt Lake            | UT  | Salt Lake City-Ogden, UT MSA                                               | 8        | 2      | 0      | 3.7                 | F     |
| Fairfax              | VA  | Washington, DC-MD-VA-WV PMSA                                               | 38       | 3      | 0      | 14.2                | F     |
| Bennington           | VT  | N/A                                                                        | 6        | 0      | 0      | 2.0                 | C     |
| King                 | WA  | Seattle-Bellevue-Everett, WA PMSA                                          | 3        | 0      | 0      | 2.0<br>1.0          | c     |
| Cabell               | WV  | Huntington-Ashland, WV-KY-OH MSA                                           | 22       | 0      | 0      | 7.3                 | F     |
| Sheboygan            | WI  | Sheboygan, WI MSA                                                          |          |        | 0      |                     | F     |
| Shebuyyall           | VVI | Sheboygan, wi woA                                                          | 25       | 5      | 0      | 10.8                | Ľ     |

#### Notes:

(1) The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, (2) States were not included if respective counties got a grade of B or higher.





#### Table 6: Counties with No Monitored Ozone Air Pollution in Unhealthy Ranges in Each State

| County          | ST | Metropolitan Statistical Area                  |
|-----------------|----|------------------------------------------------|
| Yukon-Koyukuk   | AK | N/A                                            |
| Montgomery      | AR | N/A                                            |
| Cochise         | AZ | N/A                                            |
| Coconino        | AZ | Flagstaff, AZ-UT MSA                           |
| Lake            | CA | N/A                                            |
| Marin           | CA | San Francisco, CA PMSA                         |
| Mendocino       | CA | N/A                                            |
| Monterey        | CA | Salinas, CA MSA                                |
| Plumas          | CA | N/A                                            |
| San Francisco   | CA | San Francisco, CA PMSA                         |
| San Luis Obispo | CA | San Luis Obispo-Atascadero-Paso Robles, CA MSA |
| San Mateo       | CA | San Francisco, CA PMSA                         |
| Santa Cruz      | CA | Santa Cruz-Watsonville, CA PMSA                |
| Siskiyou        | CA | N/A                                            |
| Adams           | СО | Denver, CO PMSA                                |
| Denver          | СО | Denver, CO CMSA                                |
| El Paso         | СО | Colorado Springs, CO MSA                       |
| Montezuma       | СО | N/A                                            |
| Weld            | СО | Greeley, CO PMSA                               |
| Honolulu        | HI | Honolulu, HI MSA                               |
| Harrison        | IA | N/A                                            |
| Palo Alto       | IA | N/A                                            |
| Polk            | IA | Des Moines, IA MSA                             |
| Story           | IA | N/A                                            |
| Butte           | ID | N/A                                            |
| DuPage          | IL | Chicago-Gary-Kenosha, IL-IN-WI, CMSA           |
| Rock Island     | IL | Davenport-Moline-Rock Island, IA-IL, MSA       |
| Elkhart         | IN | Elkhart-Goshen, IN MSA                         |
| Orleans         | LA | New Orleans, LA MSA                            |
| Oxford          | ME | N/A                                            |

GRADING THE RISK

| Dakota      | MN | Minneapolis-St. Paul, MN-WI MSA           |
|-------------|----|-------------------------------------------|
| Lake        | MN | N/A                                       |
| St. Louis   | MN | Duluth-Superior, MN-WI MSA                |
| Flathead    | MT | N/A                                       |
| Swain       | NC | N/A                                       |
| Billings    | ND | N/A                                       |
| Cass        | ND | Fargo-Moorhead, ND-MN MSA                 |
| Dunn        | ND | N/A                                       |
| Mercer      | ND | N/A                                       |
| Oliver      | ND | N/A                                       |
| Lancaster   | NE | Lincoln, NE MSA                           |
| Carroll     | NH | N/A                                       |
| Grafton     | NH | N/A                                       |
| Eddy        | NM | N/A                                       |
| Valencia    | NM | Albuquerque, NM MSA                       |
| Carson City | NV | N/A                                       |
| Douglas     | NV | N/A                                       |
| White Pine  | NV | N/A                                       |
| Latimer     | OK | N/A                                       |
| Clackamas   | OR | Portland-Salem, OR-WA CMSA                |
| Columbia    | OR | Portland-Salem, OR-WA CMSA                |
| Jackson     | OR | Medford-Ashland, OR MSA                   |
| Lane        | OR | Eugene-Springfield, OR MSA                |
| Marion      | OR | Portland-Salem, OR-WA CMSA                |
| Minnehaha   | SD | Sioux Falls, SD MSA                       |
| Brewster    | ТХ | N/A                                       |
| Cameron     | ТХ | Brownsville-Harlingen-San Benito, TX, MSA |
| Webb        | ТХ | Laredo, TX MSA                            |
| Cache       | UT | N/A                                       |
| San Juan    | UT | N/A                                       |
| Clallam     | WA | N/A                                       |

# 

# 26 others fell lower

# NATIONWIDE AND REGIONAL ANALYSIS

American Lung Association State of the Air: 2003 finds many changes in counties' ozone ratings, most of them favorable: 93 counties saw their ratings improve by at least one grade, while 26 counties received lower grades this year.

Some of the changes were quite impressive: San Luis Obispo, California, for instance, jumped from an F in 2002 to an A this year. In Oregon, four counties rose from Cs and Bs to receive an A rating this year. In Florida, 13 counties received higher grades this year compared with last year, as did seven counties in South Carolina.

Some states saw their grades worsen. In Maine, three counties received lower grades this year, as did in two in Massachusetts. In New York, five counties received lower grades in 2003, as did seven counties in Wisconsin.

The following discussions of states are grouped by U.S. Environmental Protection Agency region. More detailed summaries of the ozone problems in each region are contained in Appendix B.

#### Region 1: Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, and Connecticut

As noted above, three counties in Maine received lower grades this year, as did two in Massachusetts. In Rhode Island, Providence County saw its grade drop from a D to an F. None of these states had counties on the list of the 25 most ozone-polluted counties or cities. However, every state in the region except Vermont had at least two counties with the grade of F, including all monitored counties in Connecticut, Massachusetts, and Rhode Island. New England (Region 1) is one of two regions (along with Region 2) that showed some widespread decline in grades from the 2002 report.

## Region 2: New York, New Jersey, and Puerto Rico

In New York, air quality in five counties declined during this period, so their grades dropped from those in the 2002 report. Camden County, New Jersey came in at number 24 of the 25 most ozone-polluted counties, despite its slight reduction in the number of high ozone days. Region 2 also showed some decline in grades from the 2002 report.

The New York metropolitan area (including northern New Jersey and Long Island, four counties in Connecticut and one in Pennsylvania) was the 14<sup>th</sup> most ozone-polluted city—New York ranked 20th last year.

**Puerto Rico.** Although Puerto Rico is part of Region 2, ozone has not been a problem there. The island setting provides Puerto Rico with natural defenses against ozone formation. No records for 1999 emissions in Puerto Rico are included in the National Emissions Trends database.

# Region 3: Pennsylvania, Delaware, Maryland, Washington, D.C., West Virginia, and Virginia

Virginia and West Virginia saw improvement in one county each. Anne Arundel County, Maryland, was the 18<sup>th</sup> most ozone-polluted county this year; Harford County, Maryland, came in at number 25 on the list of the top 25 most ozone-polluted counties, jumping from number 50 last year.

Washington D.C./Baltimore, Maryland was the 11<sup>th</sup> most ozone-polluted city for the second year in a row; Philadelphia-Wilmington-Atlantic City, Pennsylvania-Delaware-New Jersey was number 13; and Allentown-Bethlehem-Easton, Pennsylvania, ranked 35<sup>th</sup> last year, was number 23.

#### Region 4: Kentucky, North Carolina, South Carolina, Georgia, Tennessee, Alabama, Mississippi, and Florida

The Southeast made significant improvements form the 2002 report. Kentucky saw improvements in four counties; in North Carolina, eight counties improved by at least one grade, while South Carolina saw improvement in seven counties. In Florida, 13 counties received higher grades this year's report compared with last year. Still, the problems in the Southeast remain extremely serious. Seven of the 25 most ozone-polluted counties in the nation are in Region 4. Sevier County, Tennessee, was the 12<sup>th</sup> most ozone-polluted county. Rowan County, North Carolina moved to a worse position this year, at number 16, from its ranking at number 22 in last year's report. Mecklenberg County, North Carolina came in at 19, improved from 12<sup>th</sup> worst last year. Four counties in Georgia made the list of the 25 most ozone-polluted counties this year: Fulton County was 11<sup>th</sup> on the national list, while DeKalb County was the 21<sup>st</sup>, and Henry (new to the list) and Rockdale Counties were tied for 22<sup>nd</sup>.

Ten of the nation's 25 most-ozone polluted metropolitan areas are in the Southeast, as well. Atlanta was the 8<sup>th</sup> most ozone-polluted city this year (improved from number 6 last year). Knoxville, Tennessee was number 9 on that list, while Charlotte-Gastonia-Rock Hill, North Carolina/South Carolina was 10<sup>th</sup>. Greensboro-Winston-Salem-High Point, North Carolina was 17<sup>th</sup>, while Memphis, Tennessee and Birmingham, Alabama were tied for 18<sup>th</sup> place (along with San Diego). Nashville, Tennessee, was 21<sup>st</sup>, and Raleigh-Durham-Chapel Hill, North Carolina was 22<sup>nd</sup>. Macon, Georgia was 24<sup>th</sup> and Louisville, Kentucky, 25<sup>th</sup>.

### Region 5: Ohio, Indiana, Michigan, Illinois, Wisconsin, and Minnesota

Illinois saw grade improvements in five counties in this year's report compare with the 2002 assessment; in Wisconsin seven counties received lower grades.

The Duluth-Superior metropolitan area in Minnesota/ Wisconsin and Elkhart-Goshen, Indiana, made the list of the top 20 metropolitan areas with the least ozone air pollution, as did Fargo-Moorhead, North Dakota/Minnesota. None of the states in this region had counties on the list of the 25 most ozone-polluted counties or cities.

### Region 6: Texas, Oklahoma, Arkansas, Louisiana, and New Mexico

Three Texas counties received better grades in this year's report, while one received a lower grade. Four counties in Oklahoma jumped at least one grade over the 2002 report, while four other counties that had incomplete monitoring data for the last years' report earned Fs in this year's report. Harris County, Texas, was the sixth-most ozone-polluted county for the third report in a row; Tarrant County jumped from number 37 in last year's report to number 19 this year.

Houston-Galveston-Brazoria, Texas was the fifth most-polluted metropolitan area this year for the fourth year in a row. Dallas-Fort Worth was 12<sup>th</sup> on that same list this year, a worse position than its number 16 ranking last year. In good news for Texas, both Brownsville-Harlingen-San Benito and Laredo made the list of the 20 metropolitan areas with the least ozone air pollution.

Baton Rouge was the nation's 16<sup>th</sup> most ozone-polluted city this year.

## Region 7: Nebraska, Kansas, Iowa, and Missouri

None of the states in this region had counties on the list of the 25 most ozone-polluted counties or cities, although seven counties in Missouri earned Fs. Lincoln, Nebraska made the list of the 20 metropolitan areas with the least ozone air pollution. In Iowa, four counties with ozone air monitors had no ozone air pollution in unhealthy ranges. Two counties in Kansas improved their grades from 2002.

# Region 8: Montana, North Dakota, South Dakota, Wyoming, Utah, and Colorado

In Colorado, six counties jumped at least one grade in this year's report over the 2002 assessment: in one case from a C to an A, and another from an F to a C.

None of the states in this region had counties on the list of the 25 most ozone-polluted counties or cities. In

both Colorado and North Dakota, five counties with ozone air monitors had no ozone air pollution in unhealthy ranges.

Four cities in the region made the list of the 20 metropolitan areas with the least ozone air pollution. They were Colorado Springs and Greeley, Colorado; Fargo-Moorhead, North Dakota/Minnesota, and Sioux Falls, South Dakota.

### Region 9: California, Nevada, Arizona, and Hawaii

For the fourth year in a row since the State of the Air reports began, California has the top four most ozone-polluted metropolitan areas in the United States: Los Angeles-Riverside-Orange County; Fresno; Bakers-field and Visalia-Tulare-Porterville. Sacramento-Yolo and Merced came in at 6<sup>th</sup> and 7<sup>th</sup>, and San Diego at number 18<sup>th</sup>. Redding, California, dropped from the 21st most ozone-polluted city in the 2002 report to 97 in the 2003 assessment.

California also has the five most ozone-polluted counties once again: San Bernadino, Fresno, Kern, Tulare and Riverside. Los Angeles, El Dorado, Merced and Kings Counties came in at 7-10, while Nevada, Ventura, and Sacramento Counties ranked 13-15. Altogether, thirteen counties in Region 9, all of them in California, were among the nation's most ozonepolluted. There was some good news in California: 10 counties with ozone air monitors had no ozone air pollution in unhealthy ranges, including San Francisco. And as noted above, San Luis Obispo jumped from an F to an A rating from last year's report. Four metropolitan areas in California (Salinas, San Francisco, San Luis Obispo-Atascadero-Paso Robles, and Santa Cruz-Watsonville) made the list of the 20 cities with the least ozone air pollution. Flagstaff, Arizona/Utah, and Honolulu, Hawaii, also made the list. Two counties in Arizona and three counties in Nevada had no monitored ozone air pollution in unhealthy ranges.

Phoenix-Mesa, Arizona, was the 15<sup>th</sup> most ozonepolluted metropolitan area this year.

# Region 10: Washington, Oregon, Idaho, and Alaska

In Oregon, four counties jumped at least a grade – two from a C to an A, and two from a B to an A. In Washington, three counties saw improvement in grade. Seven counties in Washington and the five counties in Oregon and the six in Washington with ozone air monitors had no ozone air pollution in unhealthy ranges. Alaska and Idaho also earned all As.

The region landed five on the list of the 20 metropolitan areas with the least ozone air pollution: Bellingham and Spokane in Washington; Eugene-Springfield and Medford-Ashland in Oregon, and Portland-Salem, Oregon/Washington. None of the states in this region had counties on the list of the 25 most ozone-polluted counties or cities.

State and local governments have agencies dedicated to the fight against air pollution. This report is in no way intended to evaluate the work of these agencies. It is important to note that some states that have made great strides have had the greatest levels of intractable pollution to remove. Also, the short time frame of this series of reports limits any evaluation of the trends in each community.

# **OZONC** is the main component of the air pollution known as Smog

# HEALTH EFFECTS OF OZONE

The American Lung Association has chosen ozone as the focus of the *State of the Air* reports because it is one of the most damaging and most pervasive of the common outdoor air pollutants. Ozone poses health dangers for millions of people in the United States, in both big and small metropolitan areas.

#### **Dangers of Ozone**

Ozone is an intensely irritating gas. Ozone is the main component of the air pollution known as smog. Ozone reacts chemically ("oxidizes") internal body tissues that it comes in contact with, such as those in the lung.

As noted at the beginning of this report, ozone, at levels commonly found in the air in many American cities during summer months, can damage the lungs and airways, causing them to become inflamed, reddened and swollen. This response can cause coughing, burning sensations and shortness of breath. Ozone increases the risk of asthma attacks in people with asthma.

The evidence about the damaging health effects of ozone continues to mount. Much research has been conducted about ozone since 1997, the last time the Environmental Protection Agency reviewed the ozone standards. The Clean Air Act requires that the standards be reviewed every five years, so it is imperative that the EPA review the standards to consider the wealth of new information that has accumulated in the last six years.

Research on the effects of prolonged exposure to relatively low levels of ozone has found reductions in lung function, inflammation of the lung lining and breathing discomfort. In studies of animals, ozone exposure has been found to increase susceptibility to bacterial pneumonia infection.

One study of 16 Canadian cities over a 10-year period found that air pollution, including ozone, at relatively low concentrations, is associated with excess admissions to the hospital for respiratory diseases.<sup>2</sup>

Ozone levels generally rise from May through September when higher temperatures and the increased amount of sunlight combine with the stagnant atmospheric conditions that are associated with ozone air pollution episodes.

In recent years, scientists have begun to focus on the effects of long-term, repeated exposure to high levels of ozone. A study of college freshmen who were lifelong residents of California found a strong relationship between lifetime ozone exposure and reduced lung function.<sup>3</sup> Additional evidence of shorter term effects comes from a study of 72 cadets at the U.S. Military Academy at West Point, who attended a summer training program in which they spent an average of 11 hours a day outdoors. The study found that the 21 cadets who attended summer training in Fort Dix, New Jersey, an area with elevated ozone levels, had a larger drop in lung function over the summer, compared with the cadets who trained at sites in Georgia, Missouri and Oklahoma with lower ozone levels.<sup>4</sup>

High ozone levels are particularly dangerous for people with asthma. When ozone levels are high, more people with asthma suffer asthma attacks that require a doctor's treatment or use of extra medication.

#### **Children at Special Risk**

A number of recent studies have added to the evidence that children are especially vulnerable to the harmful effects of ozone. Children spend significantly more time outdoors, especially in the summertime when ozone levels are the highest. Children also spend more time exercising, which causes them to breathe in more air, and therefore bring more pollution deep into the lungs.

A new study increases evidence that ozone negatively affects the growth of lung function in children. The four-year study followed 1,600 southern California children enrolled as fourth graders in 1996.<sup>5</sup> The researchers found that the children's exposure to ozone was correlated with reduced growth in peak flow rate—the ability to push air out of the lungs, which is an indicator of growth in lung function. Larger deficits in lung function growth rate were observed in children who spent more time playing outdoors, confirming findings from an earlier study of another similar group of children.

The earlier study of 1,150 children followed for three years suggests that long-term ambient ozone exposure might negatively affect human lung function growth. The researchers observed small but consistent decrements in lung function in the children that were associated with ambient ozone exposure.<sup>6</sup>

In another new study, Austrian researchers have followed almost 1,000 schoolchildren from eight communities for three years, with lung function measurements taken in the winter and summer. Although they looked at the impact of particulate matter and NO<sub>x</sub>, they found that exposure to ozone also reduced lungfunction growth, confirming earlier work. The authors note that early impairment of lung-function growth could lead to lower lung function in adulthood, predisposing individuals to chronic pulmonary diseases.<sup>7</sup>

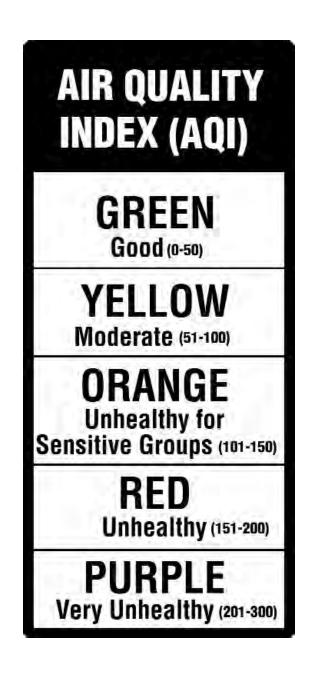
Researchers have found that when air pollution worsens, more children stay home sick from school due to respiratory illnesses. The University of Southern California researchers found that school absences due to sore throats, coughs, asthma attacks and similar problems increase in the three to five days after a significant rise in ozone.<sup>8</sup> Another study of schoolchildren in Nevada also found that increases in ozone levels were associated with an increase in the school absentee rate.<sup>9</sup>

Children with asthma are particularly susceptible to ozone. One recent indicator that the 1997 ozone standards aren't protective enough for children with asthma comes from a study of 850 children with asthma ages 4-9 living in eight inner-city urban areas in the United States: the Bronx and East Harlem in New York, Baltimore, Washington, D.C., Detroit, Cleveland, Chicago and St. Louis. Of all the pollutants studied, ozone had the greatest effect on morning peak expiratory flow rate, an indicator of lung function. Adverse respiratory effects were reported in all the cities studied. The authors noted that the results show further evidence of harm to children with as thma at levels below the current 1997 air quality standards.  $^{\scriptscriptstyle 10}$ 

Other studies also have shown a link between ozone exposure and lung function reductions in children with asthma. Researchers at the University of Southern California conducted a 10-year prospective study of Southern California public school children, and found a statistically significant association between ozone exposure and decreased lung function in girls with asthma.<sup>11</sup> Another recent study found asthmatic children who had a low birthweight or a premature birth are especially susceptible to the effects of summer ozone.<sup>12</sup>

Children with asthma can benefit greatly from a reduction in ozone concentrations, as a study of the 1996 Summer Olympics in Atlanta demonstrates. The city made a concerted effort to reduce traffic congestion to enable spectators to get to the games. Public transit was enhanced, the downtown was closed to private cars, and businesses were encouraged to promote telecommuting and alternative work hours. The result: large and significant decreases in ozone concentrations. During this period, researchers found significant reductions in the numbers of urgent care visits, emergency care visits, and hospitalizations for asthma among children ages 1-16.<sup>13</sup>

A recent study of children has found a possible link between playing team sports in a high-ozone area and an increase in the risk of developing asthma. Researchers at the University of Southern California in Los Angeles followed more than 3,500 children from 12 communities in southern California. None of the children had been diagnosed with asthma when they enrolled in the study, although some had a history of wheezing. After five years, 265 children had been diagnosed with asthma. Overall, children living in communities with high ozone levels who played team sports were more likely to develop asthma. The risk of asthma increased with each additional sport played by a child in a high-ozone community.<sup>14</sup>


#### The Elderly and Ozone

For most people, breathing ability is reduced over time. So even the healthy elderly are at increased risk from exposure to ozone and other air pollutants, which further reduces their lung function. Ozone air pollution also increases susceptibility to influenza, pneumonia and other infections, which are especially dangerous for the elderly. A study of the relationship between daily death rates in the elderly, outdoor air temperatures and ozone levels in Belgium confirms the deadly potential of ozone for senior citizens. The study found an association among daily mortality in the elderly and ambient ozone concentration during the hot summer of 1994.15 In addition, ozone can significantly worsen the condition of people with chronic bronchitis and emphysema, and since most of these diseases occur in the elderly population, these elderly are at special risk for exposure to ozone.

#### Ozone and the Air Quality Index

The Air Quality Index (AQI), established by EPA, is used by state and local agencies to report levels of air pollution. The AQI divides ambient concentrations of air pollution into categories, assigning each one a descriptor and color: Green (good), Yellow (moderate), Orange (unhealthy for sensitive groups), Red (unhealthy), Purple (very unhealthy). The American Lung Association identifies sensitive groups for ozone as children, the elderly, people with lung disease including asthma, outdoor workers, and healthy adults who exercise outdoors.

American Lung Association State of the Air: 2003 finds some noticeable reductions in the number of Orange, Red and Purple days compared with last year's report. This year, with 14 more counties being monitored compared with last year's report, there was a total of 10,815 Orange days in counties being monitored for ozone—1,811 fewer days than the previous year. The number of Red days dropped from



1,388 to 1,102 during the same period. Purple days decreased from 182 in the 2002 report to 107 in this year's report. However, there were still more than 12,000 high-ozone days for the period covered in the 2003 report.

# Our air is still too polluted in too many places putting the nation's health at risk

# PROTECTING THE NATION FROM OZONE

#### **Ozone: Where It Comes From**

Ozone is formed when sunlight and warm temperatures interact with chemicals known as hydrocarbons (or volatile organic compounds) and nitrogen oxides ( $NO_x$ ). Volatile organic compounds, or VOCs, come from a variety of human activities, especially gasoline and diesel exhaust and the evaporation of solvents (including dry cleaning fluids, paint, surface coatings, and pesticide applications). Nitrogen oxides are also emitted in gasoline and diesel exhaust, but also from the combustion of fossil fuels in power plants and factories. More details on the sources of VOCs and  $NO_x$ nationally can be found in Appendix B.

Since the Clean Air Act was enacted in 1970, efforts to reduce ozone have concentrated on reducing, first, the volatile organic compounds, and only more recently, the nitrogen oxides. EPA has been tracking NO<sub>x</sub> and five other major air pollutants since 1970, and found that while carbon monoxide, lead, particulate matter, sulfur dioxide, and volatile organic compounds have decreased significantly, NO<sub>x</sub> emissions 17 percent.<sup>16</sup> have increased approximately Reductions in VOCs have resulted in improved ozone levels: aggressive national programs tackling ozone have reduced 8-hour ozone levels nationwide by 11 percent from 1982 to 2001. However, ozone levels in some parts of the country actually increased in the decade of the 1990s, evidence that more aggressive steps were needed, especially targeting NO<sub>x</sub>.



An air quality monitoring station in Woodland, California, that monitors for ozone and fine particulates. Photo courtesy of Larry Greene, Yolo-Solano Air Quality Management District, Davis, California.

Wind can carry ozone hundreds of miles, so people who don't live in areas with high levels of VOC and  $NO_x$  emissions aren't necessarily safe from these emissions. The Clean Air Act contains provisions that have allowed states to target significant sources of pollutants like  $NO_x$  far from their borders that are contributing to their high ozone levels.<sup>17</sup> Several states have used those provisions to challenge pollution in other states. In addition, EPA launched a call for reduced  $NO_x$  emissions in many Eastern and Midwestern states that have high emissions from coal-fired power plants. The requirements from these actions won't be fully felt until after 2004.<sup>18</sup>

Ozone levels can be effectively reduced, using a combination of federal, state, and local efforts. For example, the adoption of new federal emissions standards and cleaner fuel requirements to reduce the emissions of ozone-forming pollutants from construction equipment and other large non-road engines would make a major contribution to healthier air quality. State goverments can fund more transit options in growing urban and suburban areas. City and county officials can plan development patterns that encourage walking and transit use.



Monitoring systems in trailer in Vermont. Courtesy of Vermont Department of Environmental Conservation.

In Appendix B, regional differences in ozone are discussed, including trends and sources of VOCs and  $NO_x$ .

#### The Clean Air Act: Under Fire

Since the passage of the Clean Air Act in 1970, Americans have been slowly but surely moving toward cleaner air. Human exposure to many dangerous pollutants has declined significantly due to federal, state, and local enforcement of the Act. The Clean Air Act has been one of our nation's most successful environmental laws.<sup>19</sup>

Unfortunately, as we demonstrate in *American Lung Association State of the Air: 2003*, our air is still too polluted in too many places, putting the nation's health at risk.

The American Lung Association is greatly concerned about roadblocks to continued progress toward cleaner air. Threats to the Clean Air Act come from two areas: continued delays in implementing the 1997 ozone standards and proposals to roll back key provisions of the Clean Air Act.

Failure to Follow Clean Air Act Requirements

**Delay in Enforcing the Standards.** The Clean Air Act mandates EPA to review ozone standards every five years. In 1997, the EPA issued a revised National Ambient Air Quality Standard for ozone, in large part due to constant legal pressure from the American Lung Association. This standard resulted from the most strenuous review of the science ever undertaken by the agency, and included more than 3,000 studies. The 1997 ozone standard averages ozone concentration over 8 hours and was intended to replace the 1-hour standard in effect since 1979. Research has

Standards that are not enforced do not protect our citizens.

shown that lower levels of ozone which occur over long periods, such as 8 hours, harm human lungs. The 1-hour standard only protects against peak exposure; the 8-hour standard protects against those lower, but more pervasive, chronic levels of ozone, while at the same time generally addressing those peak periods.

The EPA identified many annual health benefits of this more protective standard in 1997. Among them were: one million fewer cases of reduced lung function in children; hundreds of thousands fewer instances of aggravated coughing and other serious respiratory symptoms; and thousands fewer visits to

emergency rooms and admissions to hospitals for people with asthma.

Numerous industry groups sued EPA to challenge the standards. The D.C. Circuit ruled in May 1999 that EPA's interpretation of the Clean Air Act was unconstitutional, but the American Lung Association, EPA, and two states appealed this ruling to the Supreme Court. On February 27, 2001, the Supreme Court unanimously struck down the Court of Appeals' constitutional ruling, and sent the case back for further proceedings. The Supreme Court affirmed that the EPA had the authority to implement the 8-hour standard, but directed the agency to

reconsider its implementation approach. On March 26, 2002, the Court of Appeals upheald the 1997 air pollution standards, effectively ending the five-year legal battle as to their validity. EPA is still in the process of addressing another aspect of the Supreme Court's ruling–specifically, the Court's directive that EPA reexamine its approach to implementing the 1997 ozone standard.<sup>20</sup>

The EPA was required by law to designate "nonattainment areas" for the new ozone standard by 2001. A nonattainment area is one or more counties that have air dirtier than the national standards for a specific pollutant. Once the EPA designates a nonattainment area, several automatic controls are to be put into place, and the state and local air pollution offices begin work on a plan to reduce air pollution by a specified date. However, because the EPA has not yet designated the nonattainment areas more than five years after the tougher standards were adopted, the states have not yet begun work on their plans, and are still relying on the same weaker standards in used since 1979.

On May 20, 2002, the American Lung Association and eight environmental groups took legal action against the EPA to force them to start designating nonattainment areas. On November 13, 2002, the EPA agreed that it would make those official designations by April 2004. However, standards that are not enforced do not protect our citizens. Cleaning up the pollution from ozone is a long process, since many changes must be made. Under current conditions, the states will not have to submit their plan for cleaning up the air until 2007, 10 years after the standards were established.

*Complying with the Standards.* In settling the industry lawsuit challenging the 1997 standards, the courts determined that the EPA's plan to implement the ozone standard had failed to meet certain Clean Air Act requirements. To address that problem, the EPA is revising its guidelines for implementing the standard. These guidelines are EPA's instructions to the states on what steps they must take and what timetable they must meet to reduce the ozone pollution so areas can meet the standard. EPA began revising its implementation plan with public meetings in the winter of 2002. The American Lung Association is very concerned that these guidelines provide the most aggressive, proven provisions for reducing ozone and will continue to participate in discussions and planning for them.

As of early 2003, the EPA timeline for attaining the ozone air quality standard is as follows: in 2003, EPA will announce its guidelines for implementing the standard to the states, and states will recommend to EPA areas that do not attain the ozone standard. In April 2004, EPA will designate areas as nonattainment or attainment, and in 2007, states will submit implementation plans for nonattainment areas.

Deadlines for attainment of the new ozone standard will not come until between 2009 and 2021.

*Early Action Compacts*. In view of this long process and to avoid some of the long-term requirements of being labeled nonattainment, some local and state governments have signed agreements with EPA, termed Early Action Compacts. These state and local governments have offered to impose some controls voluntarily, earlier than under the normal schedule. In return, EPA would delay some of the requirements of long-term control on these areas, assuming that these early actions will enable them to meet the ozone standard. The American Lung Association favors local and state governments taking steps to voluntarily clean up ozone air pollution because of the benefit to the health of that community. However, the emission reduction mechanisms that would be forfeited are potential critical tools to prevent ozone from returning as a problem in the future. Of grave concern is that the Early Action Compacts fundamentally contravene the Clean Air Act. The American Lung Association will continue to express its concern and will closely observe these agreements and retain the option of challenging them in the future.

*Failure to Review the Standards.* Research around the world uncovers new information about the harm of ozone and other air pollutants on an ongoing basis. In recognition of this, the Clean Air Act requires that every five years the EPA must review the research on the health effects and review the standards themselves to see whether they reflect the requirement to "protect human health with an adequate margin of safety." EPA has failed to begin or complete that review during the five years since the last review was completed in 1997.

On December 24, 2002, the American Lung Association and eight environmental groups wrote to EPA Administrator Christine Whitman informing EPA of plans to sue the agency in 60 days for its failure to review the science and the standards for ozone and fine particles as required by law. At the time of this report, the issue was still unresolved.

#### Threats to Roll Back Clean Air Act Provisions

New Source Review. The American Lung Association is concerned about efforts to delay or derail a provision of the Clean Air Act called New Source Review. Added in the 1977 amendments to the Clean Air Act, New Source Review requires approximately 17,000 of the nation's oldest and dirtiest power plants, oil refineries, and other industrial facilities to meet the same emissions standards as a newly built one (i.e. a new source) by installing up-to-date pollution control devices if modifications to the plant significantly increase air pollution. Congress had assumed that such facilities, including power plants and refineries, would be replaced over time. To forestall industry attempts to keep adapting or enlarging these plants without cleaning them up, Congress included the New Source Review requirements.

In 1999, the EPA took dozens of the most egregious utility violators to court, and initiated administrative action against others. A few cases had been settled when the Bush Administration announced plans in May 2001 to review the New Source Review process. The EPA held public hearings to receive comment on the process while the Department of Justice reviewed the legality of EPA's authority to act. On Jan. 15, 2002, the Justice Department confirmed EPA's authority to enforce the NSR provisions.

On December 31, 2002, the Bush Administration formally proposed changes to New Source Review that represent a major setback to public health and roll back key provisions of the Clean Air Act. The changes, which go into review without further notice and comment, include:

- Allowing industrial plants to claim credit for controls installed 10 years earlier
- Exempting controls implemented in the last 15 years from upgrade if they were in compliance when installed
- Allowing plants to avoid having to clean up all pollutants if they clean up one

• Severely limiting actions that states and local governments can take to stop transported pollution.

On February 28, 2003, the American Lung Association and five environmental organizations notified EPA of the intention to sue in 60 days over the Agency's proposals. At this writing, attorneys general from fifteen states, primarily in the Northeast, have also sued EPA over the NSR provisions.

In addition, EPA proposed to redefine a seemingly simple but key trigger of the New Source Review process: routine maintenance. Under the procedures, if a company were only performing routine maintenance on its facilities, the company would not have to comply with the New Source Review requirements. EPA is proposing to allow a much broader definition of routine maintenance which would allow the cost of the activity and not its effect on pollution to exempt it from review. The American Lung Association opposes this definition as too broad and not reflective of the purpose of the Clean Air Act. EPA held public hearings in five cities on March 31, 2003 to take public comment on this proposal. The Lung Association and environmental allies testified at the hearings and continue to offer comment to EPA throughout the comment period, which closes May 3, 2003.

*Power Plants.* Power plants have become the single biggest industrial cause of unhealthy air. The death, disease, and environmental destruction caused by power plant pollution continue to mount as the emission of nitrogen oxides and sulfur dioxide has increased and the emission of mercury and carbon dioxide has gone unabated.

Since 1970, the Clean Air Act has exempted the oldest, dirtiest coal-burning power plants from complying with modern emissions standards. As a result, these power plants are permitted to emit as much as 10 times more nitrogen oxide and sulfur dioxide than modern coal plants. Even worse, the entire industry is currently allowed to emit unlimited amounts of mercury and carbon dioxide. Power plants remain the largest unregulated source of toxic mercury air emissions. This loophole in the Clean Air Act allows power companies to keep using these older facilities with outdated pollution controls. As a result, the power industry is relying on these dirty old plants more than ever. No other single source of pollution causes so many adverse health and environmental impacts as do coalburning power plants.

A Bush Administration proposal, introduced as the Clear Skies Initiative, purports to cut pollution from power plants but will be less protective than the Clean Air Act, delaying and reducing cuts in sulfur dioxide, nitrogen oxides, and mercury pollution. The administration plan would roll back existing requirements, while permitting more pollution to continue for decades longer. Specific evidence that the administration proposal sanctions more pollution than current requirements of the Clean Air Act are found in comparing the two, using EPA's own internal assessments.<sup>22</sup>

- The administration plan allows *more than one and a half times as much* NO<sub>x</sub> for nearly a decade longer (2010-2018), and *one third more* NO<sub>x</sub> even after 2018.
- The administration plan allows *more than twice as much* sulfur dioxide (SO<sub>2</sub>) for nearly a decade longer (2010-2018), compared with faithful enforcement of the current Clean Air Act. After 2018, SO<sub>2</sub> emissions will still be *one and a half times* higher than if current law is enforced.
- The administration plan lets power plants emit *more that five times as much* mercury for a decade longer (2010-2018) and *three times as much* after 2018.
- The full pollution reductions are likely to be further delayed, to as late as 2025, because of emissions "banking" provisions.

The administration plan also repeals key provisions of the Clean Air Act. No longer would local governments be able to require state-of-the-art pollution controls in new plants *of any type* or in any older plants that were increasing their pollution when they rebuilt or expanded their facilities. No longer could states located downwind of power plants in other states with major pollution effectively require those plants to reduce pollution. Revoking that provision would remove the chief tool the Northeast states used effectively to tackle pollution from Midwest and southern power plants. Even the national parks and wilderness areas would be threatened by more pollution under the administration proposal. It would repeal clean up requirements for existing sources, while weakening Clean Air Act safeguards built in for these protected lands.

#### **Real Steps to Clean Up Power Plants**

The existing Clean Air Act will require major reductions from power plants as written. If Congress considers legislation to require further reductions, the American Lung Association supports an approach that curbs power plant emissions of all the major power plant pollutants. The Clean Power Act (S. 366 introduced by Senators James Jeffords, I-VT, Susan Collins, R-ME, and Joseph Lieberman, D-CT) uses just such an approach. The bill preserves key provisions in the Clean Air Act, but targets levels of power plant pollutants that must be reduced. It provides a coordinated approach for all four major power plant pollutants-sulfur dioxide, nitrogen oxides, mercury and carbon dioxide-within the next six years. These components would ensure that power plants become cleaner and local air quality is protected.

#### New Actions Needed to Clean Up the Dirtiest Diesel

*The Problems with Diesel.* Diesel exhaust has been linked in numerous scientific studies to cancer, the exacerbation of asthma and other respiratory diseases. Dozens of studies link airborne fine particle, such as those in diesel exhaust, to increased hospital admissions for respiratory diseases, chronic obstructive lung disease, pneumonia, and heart disease and up to 60,000 premature deaths annually in the U.S.

The health risk from diesel exposure is greatest for children, the elderly, people who have respiratory problems or who smoke, people who regularly exercise in diesel-polluted areas, and people who work or live near diesel exhaust sources. A study released in February 2001 by the Natural Resources Defense Council and the Coalition for Clean Air shows that children who ride a diesel school bus may be exposed to up to four times more toxic diesel exhaust than someone traveling in a car directly in front of it. The study found that excess exhaust levels on school buses were 23 to 46 times higher than levels considered to be a significant cancer risk, according to EPA and federal guidelines.<sup>23</sup>

**Progress on Diesel.** In January 2001, the EPA reaffirmed regulations issued in 2000 that will help millions of Americans, especially children with asthma, breathe easier. The regulations will significantly limit tailpipe emissions from heavy-duty diesel trucks and buses by cleaning up the engines and the fuels they use.

The new rule will cap sulfur levels in diesel fuel at 15 parts per million (ppm) and impose tough new emission standards on all heavy-duty vehicles. This will result in a more than 90 percent reduction in emissions of harmful pollutants like particulate matter and nitrogen oxides. Particulate matter has been linked to premature death and worsening asthma, and nitrogen oxides are a principal component of ozone smog. A recent study found that ozone increases the damaging effect of diesel exhaust particles in the lungs of rats.<sup>24</sup>

The oil industry had tried to water down the rules by offering an alternative proposal with higher sulfur levels. That plan would have severely weakened the program and precluded significant reductions of nitrogen oxides and particulate matter pollution. In response to the new regulations governing sulfur in diesel fuel, the National Petroleum Refiners Association filed a lawsuit challenging the new EPA regulations in February 2001. In May 2002, the U.S. Court of Appeals for the District of Columbia Circuit upheld the EPA rules. By denying all industry petitions to review the EPA's heavy-duty vehicle and diesel rule, starting in 2007, diesel vehicles will be significantly cleaner and between 2006-2009, their fuels will be cleaner, helping millions of Americans, especially children with asthma, breathe easier.

The Dirtiest Diesel: Heavy Equipment and other Diesel Engines. While new rules to regulate emissions of onroad heavy-duty diesels (trucks and buses) will make a great deal of difference in the quality of our air, these rules alone will not be enough. EPA must also take steps to control heavy equipment and other diesel engines and fuel to the same degree as trucks and buses.

Heavy equipment diesel engines include construction equipment, such as bulldozers and excavators; industrial service equipment, including portable generators, airport service equipment, and forklifts; and agriculture equipment, such as tractors and combines. Heavy equipment diesel engines produce more fine particle emissions than heavy-duty trucks and buses.

In 1999, heavy equipment and other diesel engines accounted for 19 percent of  $NO_x$  and about one-third of the fine particle emissions. In fact, these heavy equipment emissions have grown more than those from trucks and buses:  $NO_x$  emissions jumped 250 percent for heavy equipment from 1970 to 1999, compared with 215 percent for the emissions from heavy duty vehicles.<sup>25</sup>

Heavy equipment diesel can benefit from the technological advances that will occur in order to meet the 2007 standards for trucks and buses—but only if low-sulfur diesel fuel, which is necessary for these technologies to operate, is available for the nonroad sector, as well. The Lung Association urges EPA to adopt emission standards and a sulfur cap for heavy equipment and other diesels and fuel that are equivalent to those for heavy-duty diesel trucks and buses, and the same time frame. <sup>1</sup>This report covers only 1999-2001 data because complete, quality assured data for 2002 will not be available until July 2003.

<sup>2</sup>Burnett, R.T.; Brook, J.R.; Yung, W.T.; Dales, R.E.; Krewski, D. Association between Ozone and Hospitalization for Respiratory Diseases in 16 Canadian Cities. Environmental Research 1997; 72: 24-31.

<sup>3</sup> Kunzli, N.; Lurmann, F.; Segal, M.; Ngo, L.; Balmes, J.; Tager, I.B. Association between Lifetime Ambient Ozone Exposure and Pulmonary Function in College Freshmen-Results of a Pilot Study. Environmental Research 1997; 72: 8-23.

<sup>4</sup> Kinney, P.L. and Lippmann, M. Respiratory Effects of Seasonal Exposures to Ozone and Particles. Archives of Environmental Health 2000; 55 (3):210-6.

<sup>5</sup> Gauderman, W.J., Gilliland, G.F., Vora,H., Avol, E., Stram, D., McConnell, R., Thomas, D., Lurmann, F., Margolis, H.G., Rappaport, E.B., Berhane, K., and Peters, J.M. Association between Air Pollution and Lung Function Growth in Southern California Children: Results from a Second Cohort. Am. J. Respir. Crit.Care Med. . 2002; 166:76-84.

<sup>6</sup> Frischer, T.; Studnicka, M.; Gartner, C.; Tauber, E.; Horak, F.; Veiter, A.; Spengler, J.; Kuhr, J.; Urbanek, R. Lung Function Growth and Ambient Ozone: A Three-Year Population Study in School Children. Am. J. Respir Crit Care Med 1999 160:390-396.

<sup>7</sup> Horak, F., Jr., Studnicka, M., Gartner, C., Spengler, J.D., Tauber, E., Urbanek, R., Veiter, A., Frischer, T. Particulate Matter and Lung Function Growth in Children: A 3-yr Follow-up Study in Austrian Schoolchildren. Eur. Respir. J., 2002;19: 838-845.

<sup>8</sup> Gilliland, F.D.; Berhane, K.; Rappaport, E.B.; Thomas, D.C.; Avol, E.; Gauderman, W.J.; London, S.J.; Margolis, H.G.; McConnell, R.; Islam, K.T.; Peters, J.M. The Effects of Ambient Air Pollution on School Absenteeism Due to Respiratory Illnesses. Epidemiology 2001:12:43-54.

<sup>9</sup> Chen, L.; Jennison, B.L.; Yang, W.; Omaye, S.T. Elementary School Absenteeism and Air Pollution. Inhalation Toxicology 2000;12:997-1016.

<sup>10</sup> Mortimer, K.M., Neas, L.M., Dockery, D.W., Redline, S., Tager, I.B. The Effect of Air Pollution on Inner-City Children with Asthma, Eur. Respir. J. 2002;19:699-705.

<sup>11</sup> Peters, J.M., Avol, Edward, Gauderman, W.J.; Linn, W.S.; Navidi, W.; London, S.J.; Margolis, H.; Rappaport, E.; Vora, H.; Gong, H.; Thomas, D.C. A Study of Twelve Southern California Communities with Differing Levels and Types of Air Pollution. Am J Respir Crit Care Med 1999 159:768-775.

<sup>12</sup> Mortimer, K.M.; Tager, I.B.; Dockery, D.W.; Neas, L.M.; Redline, S. The Effect of Ozone on Inner-City Children with Asthma. Am J. Respir Crit Care Med 2000 162:1838-1845.

<sup>13</sup> Friedman, M.S., Powell, K.E., Hutwagner, L., Graham, L.M., and Teague, W.G. Impact of Changes in Transportation and Commuting Behaviors During the 1996 Summer Olympic Games in Atlanta on Air Quality and Childhood Asthma. JAMA 2001;285:897-905.

ENDNOTES

<sup>14</sup> McConnell, R., Berhane, K., Gilliland, F., London, S.J., Islam, T., Gauderman, W.J., Avol, E., Margolis, H.G., Peters, J.M. Asthma in Exercising Children Exposed to Ozone: a Cohort Study. The Lancet 2002;359:386-391.

<sup>15</sup> Sartor, F.; Demuth, C.; Snacken, R.; Walckiers, D. Mortality in the Elderly and Ambient Ozone Concentration during the Hot Summer, 1994, in Belgium. Environmental Research 1997;72:109-117.

<sup>16</sup> EPA. Latest Findings on National Air Quality: 1999 Status and Trend. http://www.epa.gov/oar/aqtrnd99/brochure/brochure.pdf.

<sup>17</sup> Clean Air Act, Section 126.

<sup>18</sup> EPA, Finding of Significant Contribution and Rulemakings for Certain States in the Ozone Transport Assessment Group Region, September 24, 1998. 40 CFR 51.( http://www.epa.gov/ttn/oarpg/ t1/fr\_notices/nxsprle.pdf).

<sup>19</sup> EPA Trends Report, http://www.epa.gov/airtrends.

<sup>20</sup> American Trucking Assns. v. USEPA, 175 F.3d 1027, 1047-48 (D.C. Cir. 1999), rehearing granted in part, denied in part, 195 F.3d 4 (D.C. Cir. 1999), rev'd in part on other grounds, aff'd in part sub nom. Whitman v. American Trucking Assns., 531 U.S. 457 (2001). On remand, 283 F.3d 355 (D.C. Cir. 2002).

<sup>21</sup> American Lung Association v Whitman, 2003, D.D.C. Civ. No. 02-2239 RMU.

<sup>22</sup> EPA, "Discussion of Multi-Pollutant Strategy," Meeting with the Edison Electric Institute, September 18, 2001, "Comparison of Requirements Under Business-as-usual and the Straw Proposal," page 10. http://www.cleartheair.org/currentstatus.pdf. EPA, December 4, 2001, Supplemental presentation to Edison Electric Institute on mercury. http://www.cleartheair/epamercury.pdf.

<sup>23</sup> Solomon, Gina et al. No Breathing in the Aisles: Diesel Exhaust Inside School Buses. Natural Resources Defense Council and the Coalition for Clean Air, January 2001.

<sup>24</sup> Madden, M.C.; Richards, J.H.; Dailey, L.A.; Hatch, G.E; Ghio, A.J. Effect of Ozone on Diesel Exhaust. Particle Toxicity in Rat Lung. Toxicology and Applied Pharmacology 2000 168:140-148.

<sup>25</sup> State and Territorial Air Pollution Program Administrators and the Association of Local Air Pollution Control Administrators. The Dangers of the Dirtiest Diesels: The Health and Welfare Impacts of Non-Road Heavy Duty Diesel Engines and Fuels. June 2002.



## APPENDIX A Description of Methodology

#### Statistical Methodology: The Air Quality Data

The data on air quality throughout the United States were obtained from the U.S. Environmental Protection Agency's Aerometric Information Retrieval System (AIRS) database. The American Lung Association contracted with A.S.L. & Associates, Helena, Montana, to characterize the hourly averaged ozone concentration information for the 3-year period for 1999-2001. The 1999, 2000, and 2001 AIRS hourly ozone data were used to calculate the daily 8-hour maximum concentration for each ozone-monitoring site. The data were considered for a 3-year period for the same reason that EPA uses 3 years of data to determine compliance with the ozone: to prevent a situation in any single year, where anomalies of weather or other factors create air pollution levels, which inaccurately reflects the normal conditions. The highest 8-hour daily maximum concentration in each county for 1999, 2000, and 2001, based on the EPA-defined ozone season, was identified.

Using these results, A.S.L. & Associates prepared a table by county that summarized, for each of the 3 years, the number of days the ozone level was within the ranges identified by EPA based on the EPA Air Quality Index:

| 0.000 – 0.064 ppm | Good (Green)            |
|-------------------|-------------------------|
| 0.065 – 0.084 ppm | Moderate (Yellow)       |
| 0.085 – 0.104 ppm | Unhealthy for Sensitive |
|                   | Groups (Orange)         |
| 0.105 – 0.124 ppm | Unhealthy (Red)         |
| 0.125 – 0.374 ppm | Very Unhealthy (Purple) |

No data capture criteria were used to eliminate monitoring sites. All data within the ozone season were used in the analysis because it was the goal to identify the number of days that 8-hour daily maximum concentrations occurred within the defined ranges.

Following receipt of the above information, the American Lung Association identified the number of days each county with at least one ozone monitor experienced air quality designated as orange, red, or purple.

#### **Description of County Grading System**

A weighted average was used to determine the grade of each county. The number of orange days experienced by each county was assigned a factor of 1; red days were assigned a factor of 1.5 and purple days were assigned a factor of 2. By multiplying the total number of days within each category by their assigned factor, a total was determined. Because the monitoring data was collected over a three-year period, the total was divided by three to determine the weighted average. Each county's grade was determined using the weighted average. Counties were ranked by weighted average. Metropolitan areas were ranked by the highest weighted average among the counties in the Census Bureau-defined Metropolitan Statistical Area. All counties with a weighted average of zero (corresponding to no exceedences of the 8-hour standard over the three year period) were given a grade of A. Counties with a weighted average of 0.3 to 0.9 (generally corresponding to 1 to 2 orange days) received a B. Counties receiving a C had only 3 to 6 days over the standard, typically including at most one red day, scored a weighted average of 1.0 to 2.0. Counties received a D if they had a weighted average of 2.1 to 3.2, which meant they had generally 7 to 9 days over the standard. Counties with weighted averages of 3.3 or higher (corresponding to approximately the 8-hour standard) received an F. These counties generally had at least 10 orange days or 9 days over the standard with at least one or more days in the red or purple category.

#### **GRADING SYSTEM**

| Grade | Weighted Average | Approximate Number of Allowable<br>Orange/Red/Purple days                                                                            |
|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| А     | 0.0              | None                                                                                                                                 |
| В     | 0.3 to 0.9       | 1 to 2 orange days<br>with no red                                                                                                    |
| С     | 1.0 to 2.0       | 3 to 6 days over the standard:<br>3 to 5 orange with no more than<br>1 red OR 6 orange with no red                                   |
| D     | 2.1 to 3.2       | 7 to 9 days over the standard:<br>7 total (including up to 2 red) to<br>9 orange with no red                                         |
| F     | 3.3 or higher    | <ul><li>9 days or more over the standard:</li><li>10 orange days or 9 total including<br/>at least 1 or more red or purple</li></ul> |

Weighted averages allow comparisons to be drawn based on severity of air pollution. For example, Jessamine County, Kentucky, received a D because it had 9 orange days and 0 red days, earning it a weighted average of 3.0. However, York County, Maine, received an F although it only had 6 orange days, because it also had 3 red days, which signify days with more serious air pollution. York County had a weighted average of 3.5.

Note that this system differs significantly from the methodology EPA uses to determine violations of the ozone standard. EPA determines whether a county violates the standard based on the 4<sup>th</sup> maximum daily 8-hour ozone reading each year averaged over three years. Multiple days of unhealthy air beyond the highest four in each year are not considered. By contrast, the system used in this report recognizes when a community's air quality repeatedly results in unhealthy air throughout the three years. Consequently, some counties will receive grades of F in this report showing repeated instances of unhealthy air, while still meeting EPA's 1997 ozone standard or the 1-hour ozone standard set in 1979.

#### **Calculations of Populations-at-Risk**

Presently, state- (with the exception of adult asthma) and county-specific measurements of the number of persons with chronic and acute lung disease are not available. In order to assess the magnitude of lung disease at the state and county level, we have employed a synthetic estimation technique originally developed by the U.S. Bureau of the Census. This method uses age-specific national estimates of reported lung disease to project the prevalence and incidence of lung disease within the counties served by Lung Association constituents and affiliates.

#### **Population Estimates**

The U.S. Census Bureau estimated data on the total population of each county in the United States for 2000. The Census Bureau also estimated the age specific breakdown of the population by county.

#### PREVALENCE ESTIMATES

## Chronic Bronchitis, Emphysema and Pediatric Asthma

In 2000, the National Health Interview Survey (NHIS) estimated the nationwide annual prevalence of diagnosed chronic bronchitis at 9.4 million; the nationwide lifetime prevalence of emphysema was estimated at 3.1 million. The NHIS estimates the prevalence of diagnosed pediatric asthma to be close to 4.0 million under age 18. 2000 represents the most recent year of publication of prevalence data for the Health Interview Survey, and so was utilized to calculate county-specific prevalence. Due to the change in the Health Interview Survey questionnaire, the prevalence estimates calculated for these purposes will differ from those delineated in the 2000 State of the Air Report. However, this year's estimates can be compared to the 2001 and 2002 State of the Air Report. Additionally, estimates for chronic bronchitis and emphysema should not be summed since they represent different types of prevalence estimates.

Local area prevalence of chronic bronchitis, emphysema and asthma are estimated by applying age-specific national prevalence rates from the 2000 NHIS to agespecific county-level resident populations obtained from the U.S. Bureau of the Census web site. Prevalence estimates for chronic bronchitis and emphysema are calculated for those 18-44, 45 to 64 and 65+. The prevalence estimate for pediatric asthma is calculated for those under age 18.

#### Adult Asthma

In 2001, the Behavioral Risk Factor Surveillance System (BRFSS) survey indicated that approximately 7.2 percent of adults residing in the United States reported having asthma. The information on adult asthma obtained in the Behavioral Risk Factor Surveillance System survey cannot be compared with that from the National Health Interview Survey. Additionally, estimates for pediatric and adult asthma should not be summed since they represent different types of prevalence estimates. The prevalence estimate for adult asthma is calculated for those 18 to 44, 45 to 64 and 65+. Local area prevalence of adult asthma is estimated by applying agespecific state prevalence rates from the 2001 BRFSS to age-specific county-level resident populations obtained from the U.S. Bureau of the Census web site.

#### **Limitations of Estimates**

Since the statistics presented by the NHIS and the BRFSS are based on a sample, they will differ (due to random sampling variability) from figures that would be derived from a complete census, or case registry of people in the U.S. with these diseases. The results are also subject to reporting, non-response and processing errors. These types of error are kept to a minimum by methods built into the survey. Additionally, a major limitation of both surveys is that the information collected represents self-reports of medically diagnosed conditions, which may underestimate disease prevalence since not all individuals with these conditions have been properly diagnosed. However, the NHIS is the best available source that depicts the magnitude of acute and chronic lung disease on the national level and the BRFSS is the best available source for adult asthma information. The conditions covered in the survey may vary considerably in the accuracy and completeness with which they are reported.

Local estimates of chronic lung diseases are scaled in direct proportion to the base population of the county and its age distribution. No adjustments are made for other factors that may affect local prevalence (e.g., local prevalence of cigarette smokers or occupational exposure) since the health surveys that obtain such data are rarely conducted on the county level. Because the estimates do not account for geographic differences in the prevalence of chronic and acute diseases, the sum of the estimates for each of the counties in the United States may not exactly reflect the national estimate derived by the NHIS or state estimates derived by the BRFSS.

#### REFERENCES

Irwin, R. Guide to Local Area Populations U.S. Bureau of the Census Technical Paper Number 39 (1972).

National Center for Health Statistics. Raw Data from the National Health Interview Survey, United States, 2000. Calculations by the American Lung Association Best Practices Division using SPSS and SUDAAN software.

Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System, 2001.

Population Estimates Branch, U.S. Bureau of the Census. County Resident Population Estimates, by Age: July 1, 2000.

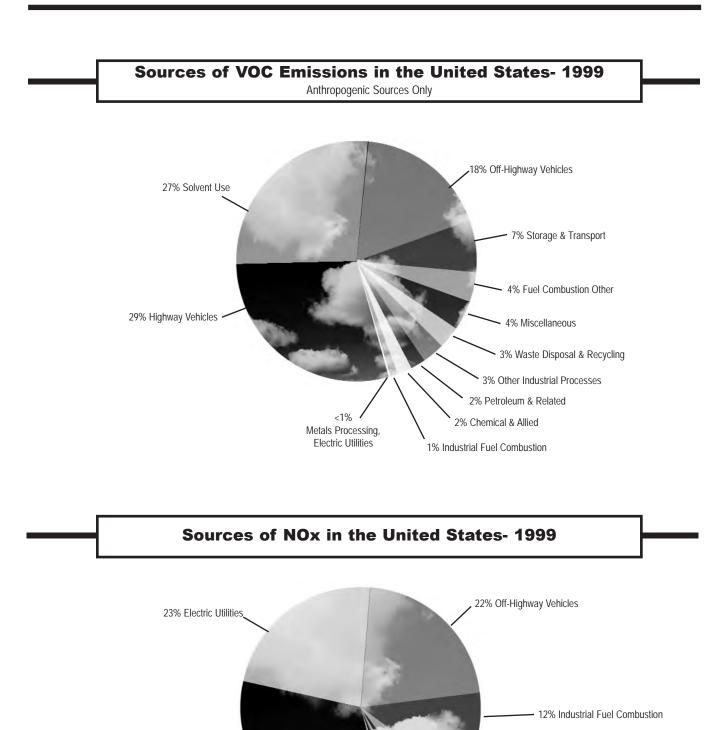


## APPENDIX B Regional Differences in Ozone

#### Introduction

Ozone requires the right mix of two essential groups of gases: volatile organic compounds (VOCs) and nitrogen oxides (NOx). When those gases are combined in sunlight with the right amount of heat, ozone forms. However, the sources of these gases, success at reducing them and the complications of ozone transported by the wind vary from region to region. The following analysis looks at the sources, trends and transport of ozone in each of the ten regions that EPA uses to group the states.

#### **National Sources of Ozone**


All the data on emissions of VOCs and NOx in this appendix were obtained from the US EPA's National Emissions Trends Tier reports for 1999 inventoried data. Those data include emissions not only from individual facilities (called point sources), but also from so-called area sources which include many small, individual sources (like cars or residences) and sources that cover a large geographic area, such as wildfires. The data are estimated annually, but the sources are inventoried only every three years. The 1999 data are the most current based on inventories of sources. The data are available at http://www.epa.gov/air/data/nettier.html?us~USA~United%20States.

The National Emissions Trend Tier data were sorted by region, by major source category, and by pollutant for this discussion. A brief description from EPA follows to explain each of the major source categories.

| What do | the  | Categ | ories in |
|---------|------|-------|----------|
| these P | ie C | harts | Mean?    |

| Category                            | Includes these activities or sources                                                                                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric Utility<br>Fuel Combustion | Power plants that produce electricity                                                                                                                                 |
| Industrial Fuel Combustion          | Boilers and other processes that burn fuel at industrial plants                                                                                                       |
| Other Fuel Combustion               | Residential woodstoves and fireplaces; other processes burning fuel in residential, commercial and institutional settings                                             |
| Chemicals and Allied Products       | Industries that produce chemicals and related products                                                                                                                |
| Metals Production                   | Industries that produce metals and metal products                                                                                                                     |
| Petroleum and<br>Related Products   | Rubber and plastics production; oil and gas production; petroleum refining                                                                                            |
| Other Industrial Processes          | Agriculture, food, and related products; wood, pulp, and paper; machinery, mineral products                                                                           |
| Solvent Use                         | Graphic arts, dry cleaning, surface coating, degreasing processes, pesticide applications                                                                             |
| Storage and Transport               | Storage and transport of petroleum and petroleum products, including service stations and bulk terminals and plants and organic chemicals, rail and tank car cleaning |
| Waste Disposal and Recycling        | Wastewater treatment; treatment, storage and disposal facilities; incineration, open burning; scrap and waste materials; landfills                                    |
| Highway Vehicles                    | Cars, trucks, buses                                                                                                                                                   |
| Off-Highway Vehicles                | Recreational vehicles, construction equipment, marine, rail                                                                                                           |
| Miscellaneous                       | Cooling towers, firefighter training, engine testing, forest fires, slash/prescribed burning                                                                          |

Source: EPA, Handbook for Criteria Pollutant Inventory Development: A Beginners Guide for Point and Area Sources, 1999.



33% Highway Vehicles

<1% Metals Processing,

Solvent Use, Storage & Transport,

Waste Disposal & Recycling

1% Chemical & Allied

1% Miscellaneous

5% Other Fuel Combustion

2% Other Industrial Processes

1% Petroleum & Related

#### **Ozone Trends**

Nationally, we have seen a significant improvement in the past 20 years in monitored ozone levels with a decline of 11 percent between 1982 and 2001. The EPA map below shows that the success has varied greatly by region. From the steepest drop of 24 percent in Region 9, led by California's stringent controls, to the significant lack of progress in the lower Midwest in Region 7, where monitored levels have remained stagnant. More ominously, many regions actually saw a significant increase in ozone levels during the 1990s. Region 7 had the largest increase in that decade, 13 percent increase in monitored ozone levels, while three other regions (3, 4, and 5) also increased monitored 8-hour ozone emissions. For more discussion of the differences in 8-hour ozone trends, see the descriptions below for each region.



Source: US EPA, Air Trends, 2001. http://www.epa.gov/oar/airtrends/ozone.html.

#### Note on Regional Trends

Because air quality monitors are concentrated in urban locations, it is not possible, strictly speaking, to accurately describe average ozone concentrations across as large an area as an EPA Region. EPA includes this reminder in its discussion of the trend data: "These trends are influenced by the distribution of monitoring locations in a given region and, therefore, can be driven largely by urban concentrations. For this reason, they are not indicative of background regional concentrations."<sup>i</sup> For more discussion on regional trends, see EPA's annual *Air Trends* report, at http://www.epa.gov/oar/airtrends/ozone.html.

US EPA, Air Trends, 2001, http://www.epa.gov/oar/airtrends/ozone.html.

#### The Transport of Ozone

By its nature, ozone is created in the atmospheric mixing bowl and carried by prevailing winds to areas often far beyond its source. Section 110 of the Clean Air Act recognizes the impact of ozone transported across political boundaries, by requiring communities to prevent sources from "contributing significantly" to downwind areas. When that doesn't work, Section 126 of the Act allows downwind states to petition EPA to step in and act to reduce industrial pollution from upwind sources.

The most comprehensive effort to reduce transported ozone is currently in progress. Years of study in the 1990s had identified significant sources of NOx, largely from electric power plants, which were contributing to the ozone levels in much of the Northeast. At the request of 8 Northeastern states, EPA issued a rule in September 1998 targeting most of the eastern United States, a requirement commonly referred to as the NOx SIP call.<sup>2</sup> This rule required 22 states and the District of Columbia to significantly reduce NOx emissions by May 1, 2003, a date that was later extended to May 31, 2004, by court action for most of the states.<sup>3</sup> The states included in the requirement are: Alabama, Connecticut, Delaware, Georgia, Illinois, Indiana. Kentucky, Massachusetts, Marvland. Michigan, Missouri, North Carolina, New Jersey, New York, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia, Wisconsin, and West Virginia.

Ozone is also transported across national borders. For example, ozone produced south and west of the New England states in the Ohio Valley and in the Canadian "Windsor-Quebec Corridor." In those two areas, heavy concentrations of power plants and transportation corridors produce ozone, which is carried into New England and the Mid-Atlantic States (EPA Regions 2 & 3), as well as into New Brunswick and other Canadian provinces.<sup>4</sup>

Not only does ozone move into a state from the outside, it also moves within the state. For example, some air pollution episodes have been followed hour-byhour as they moved downwind from city to city within Pennsylvania.<sup>5</sup> In many cases, the highest levels of ozone will show up in suburban areas to downwind of larger communities. For example, even though an area such as San Francisco County in California may not be experiencing high ozone readings, it may be contributing to poor air quality in outlying areas such as the Sacramento and San Joaquin Valley areas to the East and other parts of the Bay Area to the south.<sup>6</sup>

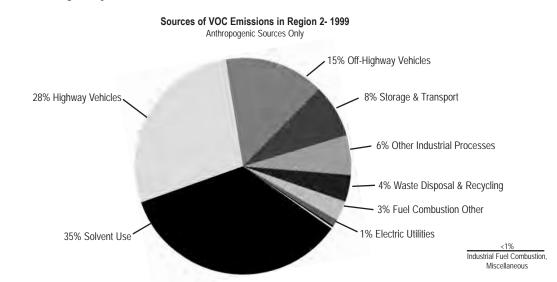
There are some regions that are notable as sources of transported ozone affecting cities and states within the region and outside it. The Southeast (EPA Region 4) and the Midwest (EPA Region 5) are two. The Southeast is home to some of the most polluting power plants in the nation<sup>7</sup> and to cities with extremely high driving rates. Atlanta residents average 37.6 miles per day; Birmingham, 35.6; and Asheville, North Carolina, 47.5—all of them much higher than the traditionally car-dependent Los Angeles, whose residents average only 22.2 miles each day.<sup>8</sup> As a result, the Southeast produces more NOx emissions (5.4 million tons in 1999) and VOC emissions (4.15 million tons) than any other section of the country.

The Midwest (EPA Region 5) is another region with many of the nation's most polluting coal-fired power plants, including 8 of the top 20 NOx emitting facilities in the nation in 1999.<sup>9</sup> This region produces the second highest NOx emissions—4.98 million tons— and the second highest VOC emissions—3.5 million tons—in 1999.

### Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, and Connecticut LOCAL SOURCES OF VOCs VOC sources in this region are very similar to those in the nation as a whole. The largest sources generated by human activity are highway vehicles and solvents, which make up 29 percent each. Off-highway vehicles make up 20 percent. The next largest categories are other fuel combustion (7%), storage and transport (6%) and waste disposal and recycling (5%). Total tons generated by human activity in 1999 were 747,249, the lowest of all the 10 regions. Sources of VOC Emissions in Region 1- 1999 Anthropogenic Sources Only 20% Off-Highway Vehicles 7% Fuel Combustion Other 6% Storage & Transport 29% Solvent Use 5% Waste Disposal & Recycling 2% Other Industrial Processes 29% Highway Vehicles 1% Industrial Fuel Combustion % Miscellaneous Electric Utilities LOCAL SOURCES OF NOx Highway vehicles make up a much larger percentage of NOx emissions in New England than in the nation as a whole. Off-highway vehicles are the same percentage as the nation (22%). However, cleaner power plants in the region result in electric utilities contributing only 9 percent of the region's NOx emissions. Other fuel combustion (8%) generates a slightly higher percentage of NOx than the nation as a whole, while NOx from industrial fuel consumption is much lower than the nation at 6 percent. Total tons generated by human activity in 1999: 745,050, the lowest of all the regions.<sup>x</sup> Sources of NOx Emissions in Region 1- 1999

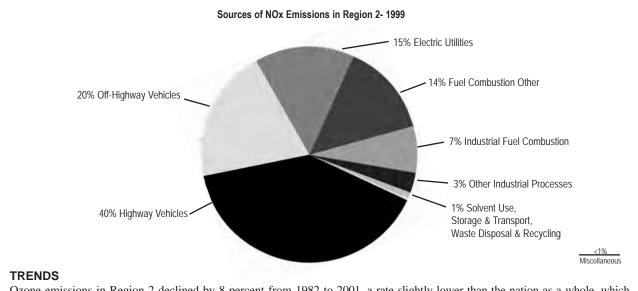
**REGION 1** 

## Sources of NOX Emissions in Region 1- 1999 22% Off-Highway Vehicles 9% Electric Utilities 8% Fuel Combustion Other 2% Solvent Use, Storage & Transport, Waste Disposal & Recycling 1% Other Industrial Processes 6% Industrial Fuel Combustion


#### TRENDS

Ozone levels have declined significantly more in Region 1 than in the nation as a whole. Region 1 has seen more reductions in ozone levels than all other regions except Regions 9 and 10 (the west coastal states, Alaska and Hawaii). Levels have declined by 20 percent from 1982 to 2001, compared with the national levels, which have dropped by 11 percent in that time frame. However, ozone levels in the region declined by only 3 percent in the 1990s.<sup>xi</sup>

### **REGION 2** New York, New Jersey, and Puerto Rico


#### LOCAL SOURCES OF VOCs

In Region 2, more than one-third of human-created VOCs comes from solvent use, compared with the nation as a whole, where only 27 percent comes from those sources. The region's vehicles, both highway and off-road, generate about the same portion of VOCs in these states as they do in the nation (28% and 15% respectively in the region, versus 29% and 18% nationally). Industrial sources, including chemical, metals, petroleum and other industries, comprise 6 percent, which is comparable to the national rate of 7 percent. In 1999, Region 2 produced 1.149 million tons of VOCs.



#### LOCAL SOURCES OF NOx

Highway vehicles represent a much higher portion of NOx emissions in Region 2 (40%) than the nation as a whole (33%). The portion from off-highway vehicles is slightly lower in the Region, at 20 percent, than the national percentage (22%). Significantly, emissions from electric utilities are much lower, at 15 percent, than nationally (23%). Industrial fuel combustion is also much lower, at 7 percent than the national percentage (12%), but combustion from other sources is significantly higher (14% versus 5%), so the percentage of total fuel combustion from all three sources (electric utilities, industrial and others) is slightly less in the region (36%) than the national rate (40%). In 1999, Region 2 produced 1.305 million tons of NOx.



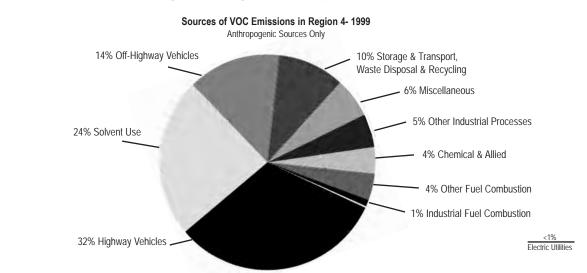
Ozone emissions in Region 2 declined by 8 percent from 1982 to 2001, a rate slightly lower than the nation as a whole, which dropped 11 percent in the same period. However, during the 1990s, the regional ozone level declined by only 1 percent.

### Pennsylvania, Delaware, Maryland, Washington, D.C., West Virginia, and Virginia LOCAL SOURCES OF VOCs According to EPA's emissions inventory, human activity in Region 3 in 1999 put 1.51 million tons of VOCs into the air. Once again, the transportation sector accounted for the single largest contribution to the inventory -45 percent of the Region's emissions, 29 percent from highway vehicles, and 16 percent from off-road vehicles. Transportation generates a similar percentage nationally (47%), but Region 3's off-road vehicle sector is slightly smaller than the national highway vehicle sector (16% v 18%). The other significant source was the use of solvents, comprising 31 percent, nearly a third, of Region 3's emissions of VOCs, higher than the national percentage of solvent use (27%). Sources of VOC Emissions in Region 3- 1999 16% Off-Highway Vehicles 7% Industrial & Other Fuel Combustion 7% Storage & Transport 29% Highway Vehicles 5% Waste Disposal & Recycling 2% Chemical & Allied, Metal Processing, Petroleum & Related 2% Other Industrial Processes 1% Miscellaneous 31% Solvent Use <1% Electric Utilities LOCAL SOURCES OF NOx According to EPA's emissions inventory, human activity in Region 3 in 1999 put 2.43 million tons of NOx into the air. Fully half (50%) came from highway vehicles and off-highway vehicles. The other significant contributor was fuel combustion, comprising over 44 percent of Region 3's NOx emissions. Contributions from electricity generation by utilities accounted for nearly twothirds of this sector and over one-quarter of the whole (28%). Compared with the nation as a whole, Region 3 has a higher percentage from electric utilities (28% v 23% nationally) and a lower percentage from off-highway vehicles (17% v 22% nationally).<sup>9</sup> Sources of NOx Emissions in Region 3- 1999 17% Off-Highway Vehicles 8% Industrial Fuel Combustion 28% Electric Utilities 8% Other Fuel Combustion 3% Other Industrial Processes 1% Chemical & Allied, Metal Processing, Petroleum & Related, Miscellaneous 1% Metal Processing 1% Waste Disposal & Recycling

**REGION 3** 

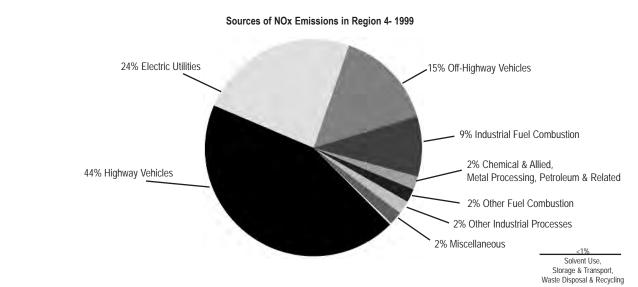
#### TRENDS

Monitored ozone levels dropped by 4 percent between 1982 and 2001, a trend much lower than the nation as a whole, which dropped 11 percent during the same period. Furthermore, the long-term decline could have been greater had not the region's ozone levels risen by 9 percent in the 1990s.<sup>10</sup>


33% Highway Vehicles

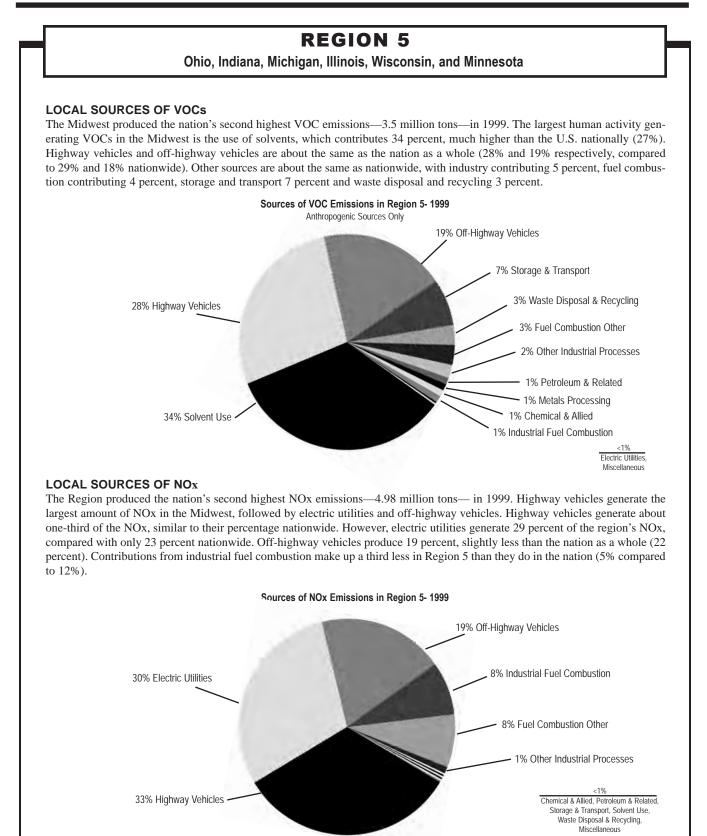
### **REGION 4**

Kentucky, North Carolina, South Carolina, Georgia, Tennessee, Alabama, Mississippi, and Florida


#### LOCAL SOURCES OF VOCs

Region 4 produces more VOC emissions (4.15 million tons in 1999) than any other section of the country The largest sources generated by human activity are transportation, which accounts for 46 percent, almost the same as the nation as a whole, which is 47 percent. Of these sectors, the percentage from highway vehicles is greater in the Southeast than it is in the nation (32% v 29% nationwide). Off-highway vehicle sources are lower in the Southeast than nationally (14% v 18%). Solvent use contributed 24 percent of VOCs in the Southeast, compared with 27 percent nationally.




#### LOCAL SOURCES OF NOx

Region 4 produces more NOx emissions (5.4 million tons in 1999) than any other section of the country. The transportation sectors make up a larger portion of the NOx sources in the Southeast (59%) than they do in the nation as a whole (55%). This is largely due to highway vehicles, which produce a much larger portion of the total in the Southeast (44% v 33%). The next largest sources are emissions from electric utilities, at 24 percent, which is about same as nationally. Industrial fuel combustion makes up a lower percentage in the Southeast than nationwide (9% v 12%).

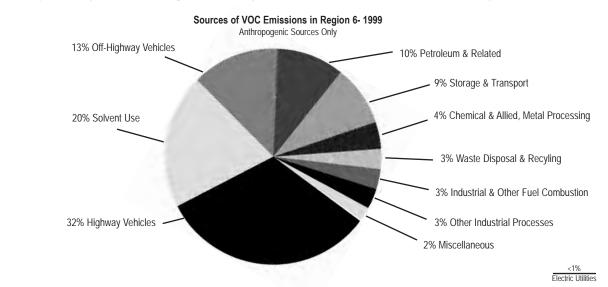


#### TRENDS

Monitored data show ozone levels in the Southeast have declined, but not as swiftly as the nation as a whole. The ozone levels dropped in the region by 2 percent from 1982 to 2001, much less than the nation which dropped by 11 percent. Furthermore, the long-term decline could have been greater had not the region's ozone levels risen by 9 percent in the 1990s.

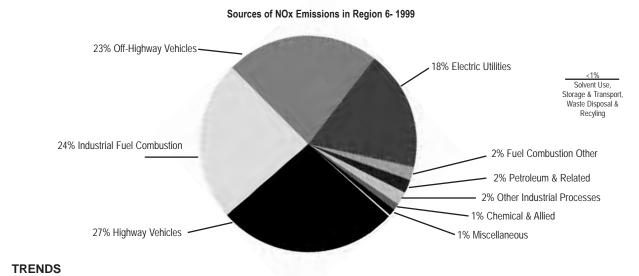


#### TRENDS

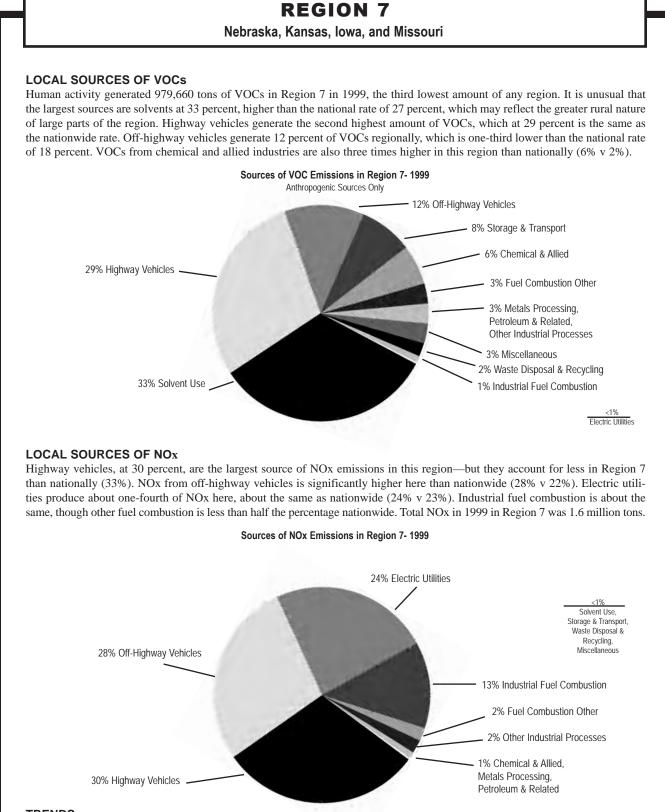

Monitored ozone levels dropped by 9 percent between 1982 and 2001, a trend slightly behind the nation as a whole, which dropped 11 percent during the same period. Furthermore, the long-term decline could have been greater had not the region's ozone levels risen by 7 percent in the 1990s.

### **REGION 6**

#### Texas, Oklahoma, Arkansas, Louisiana, and New Mexico


#### LOCAL SOURCES OF VOCs

VOCs generated by human activity in this region include highway vehicles (32% compared with 29% nationally); off-highway vehicles (13% compared with 18% nationally); and solvents (20% regionally compared with a national rate of 27%). Region 6 had a higher rate of VOCs from petroleum and related products (10% regionally compared with 2% nationally), and storage and transport (9% regionally, compared with a national rate of 7%). This difference probably reflects the concentration of the petroleum industry in the region. Total VOCs produced in Region 6 were 2.5 million tons in 1999, the third highest.




#### LOCAL SOURCES OF NOx

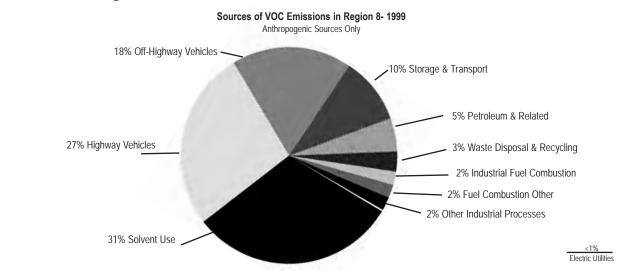
Highway vehicles represented the largest source of NOx in this region at 27 percent, lower than national rate of 33 percent. The next highest source of NOx in the region is industrial fuel combustion, which, at 24 percent, is very high compared with the national percentage (12%). Off-highway vehicles produce 23 percent of NOx regionally, compared with 22 percent nationally. Electric utilities represented 18 percent regionally, compared with 23 percent nationally. Petroleum and related NOx, at 2 percent, is twice the national rate (1%), and probably reflects concentration of the petroleum industry in the region. Total NOx produced in Region 6 was 4.2 million tons in 1999 (the third highest region).



Monitored ozone levels dropped by 9 percent between 1982 and 2001, a trend slightly behind the nation as a whole, which dropped 11 percent during the same period. Furthermore, the long-term decline could have been greater had not the region's ozone levels remained unchanged from 1990-1999.

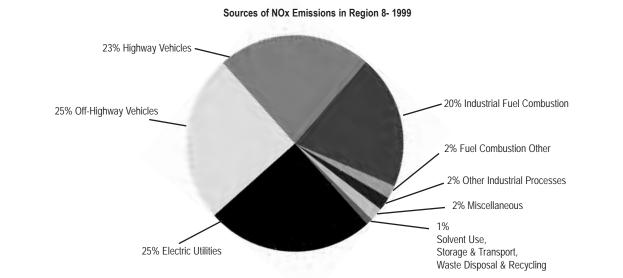


#### TRENDS


This is the one region of the nation where monitored ozone levels remained unchanged between 1982 and 2001, in contrast to the nation as a whole, which dropped 11 percent during the same period. Furthermore, the region's ozone levels rose by 13 percent from 1990-1999, the worst increase in any region during that decade.

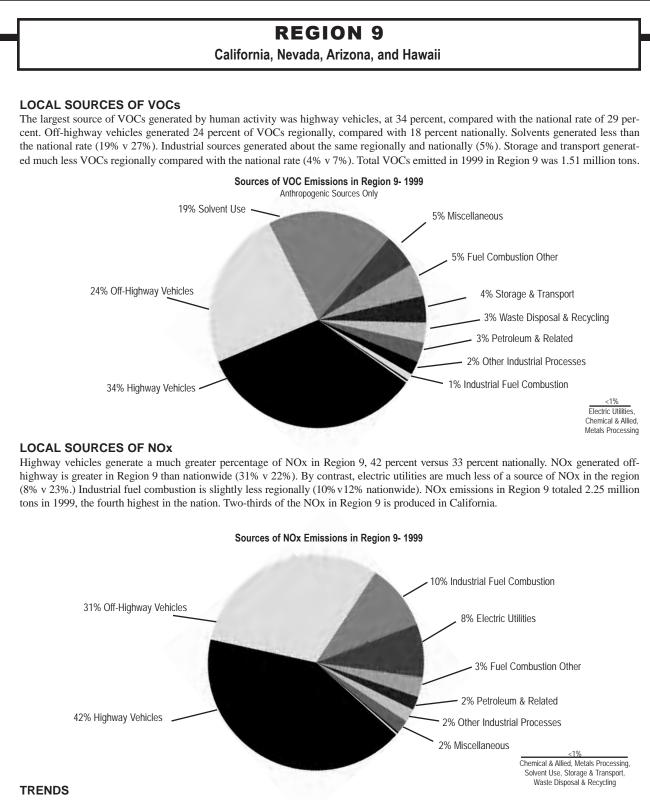
## **REGION 8**

#### Montana, North Dakota, South Dakota, Wyoming, Utah, and Colorado


#### LOCAL SOURCES OF VOCs

The largest human-generated source of VOCs in Region 8 is solvent use, at 31 percent, higher than the nation as a whole. Highway vehicles contribute just over one-fourth at 27 percent, lower than the 29 percent produced nationally. Off-highway vehicle use, the third largest source, is 18 percent, the same as the national rate. In 1999, Region 8 produced 778,485 tons of VOCs, the second lowest of all the regions.




#### LOCAL SOURCES OF NOx

The largest sources of NOx emissions in Region 8 were electric utilities and off-highway vehicles, which each generated onefourth of the total of 1.5 million tons in 1999. Nearly another fourth came from highway vehicles (23%). While the electric utility and off-highway contributions are higher than the nation as a whole, the highway vehicle contribution is lower by ten percent (23% v 33%). Industrial fuel combustion in the region makes up a much larger proportion, at 20 percent, than it does nationwide (12%). Industrial sources are less of a factor than in the nation as a whole (2% v 4%).

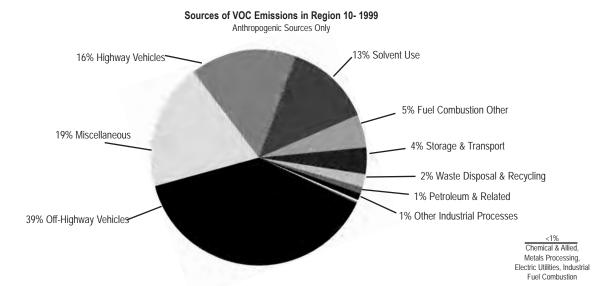


#### TRENDS

Monitored ozone levels dropped by 9 percent between 1982 and 2001, a trend slightly behind the nation as a whole, which dropped 11 percent during the same period. Furthermore, the long-term decline could have been greater had not the region's ozone levels dropped by only 1 percent in the 1990s.

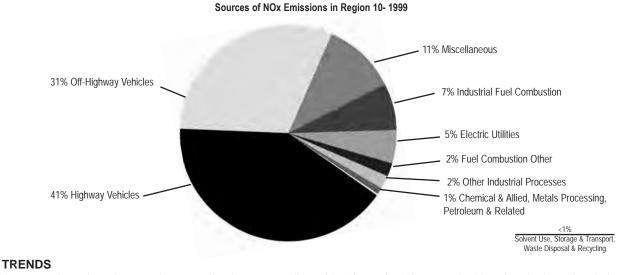


California has led the way in reducing ozone levels in the nation. This success is reflected in the steep decline in Region 9's ozone levels from 1982 to 2001, when the monitored levels dropped by 24 percent, the greatest reduction in any region of the nation and over twice the national rate (11%). Furthermore, in the 1990s when 4 of the 10 regions increased emissions, this region was second only to the Northwest, Region 10, in reducing ozone, dropping 13 percent in that decade.


Growth and dependence on the car will continue to challenge the region in achieving clean air. In California, for example, the population grew by 39 percent between 1981 and 2000. That growth was far outstripped by increased driving: the average daily number of vehicle miles traveled grew by 91 percent in that same period.<sup>xii</sup>

### **REGION 10**

#### Washington, Oregon, Idaho, and Alaska


#### LOCAL SOURCES OF VOCs

In this section of the country, off-highway vehicles dominate the VOC sources from all human activity, contributing nearly twofifths (39%) of the total. By contrast, the nation's off-highway section is less than half that at 18 percent. Highway vehicles represent only16 percent, about half the national rate of 29 percent. Solvent use also contributes less than half the rate seen nationally, at 13 percent versus 27 percent. Other VOC sources are more similar to the national rates, though industrial sources are half (2% v 4%) of the nationwide rate. Region 10 produced 1.3 million tons of VOCs in 1999.



#### LOCAL SOURCES OF NOx

Highway vehicles contribute the largest amount of NOx in the region—41 percent of the 892,073 tons generated in 1999. This is the second lowest NOx total of all regions in the nation. The percentage of highway vehicle NOx emissions in Region 10 is higher than it is in the nation as a whole, where it makes up 33 percent of emissions. Off-highway vehicles contribute 31 percent of NOx, higher than the national rate of 22 percent. Electric utilities emit only 5 percent of total NOx in this region, compared with 23 percent nationwide. Miscellaneous sources are an unusually high percentage at 11 percent. Industrial fuel combustion is only 7 percent compared with 12 percent nationally. Industrial emissions that are not fuel combustion account for 3 percent, slightly less than the national rate of 5 percent.



Ozone monitors show the second greatest drop in ozone readings (21%) in Region 10 among the 10 regions in the nation during the period 1982-2001. During the same period the nation dropped by only 11 percent. During the 1990s, when many areas in the nation had increased ozone levels, the northwest and Alaska saw the greatest drop, by 21 percent.

## **ENDNOTES**

48

<sup>1</sup> US EPA, Air Trends, 2001, http://www.epa.gov/oar/air-trends/ozone.html.

<sup>2</sup> US EPA, Finding of Significant Contribution and Rulemaking for Certain States in the Ozone Transport Assessment Group Region for Purposes of Reducing Regional Transportation of Ozone, 40 CFR Parts 51, 72, 75 and 96.

<sup>3</sup> US EPA, Interstate Ozone Transport, Response to Court Decisions on NOx SIP Call, the NOx SIP Call Technical Amendments, and Section 126 Rules, February 12, 2002 Found at http://www.epa.gov/ttn/naaqs/ozone/rto/sip/data/ph2prop\_final.pdf.

<sup>4</sup> Notes from the New Brunswick Lung Association, 2003. One of the groups working to reduce cross border ozone transport, is the Lung Associations' International Centre for Air Quality and Human Health created by the American Lung Association of Maine and the New Brunswick [Canada] Lung Association. The Centre promotes actions to reduce emissions and improve air quality for the people in the six New England states and in five eastern Canadian provinces. Actions high in the Centre's priorities are assessing the region's air quality and health impacts, facilitating research and educating the public. <sup>5</sup> Correspondence from Kevin Stewart, American Lung Association of Pennsylvania, February 5, 2003.

<sup>6</sup> Communication from the American Lung Association of California, January 2003.

<sup>7</sup> EPA, National Environmental Trends Database, 1999 data.

<sup>8</sup> Office of Highway Policy Information, Federal Highway Administration, Highway Statistics 2001.

<sup>9</sup> EPA, National Emissions Trends database, 1999 data.

<sup>10</sup> All data on sources of VOCs and NOx by region are from the U.S. Environmental Protection Agency, National Emissions Trends database, 1999 data. http://www.epa.gov/ air/data/index.html.

<sup>11</sup> All discussion of trends in ozone are from the same source, EPA, Air Trends, 2002, http://www.epa.gov/airtrends/ ozone.html; EPA, National Air Quality and Emissions Trends Report, March 2001.

<sup>12</sup> California Air Resources Board, Air Quality Almanac, 2002.

## Additional Comparison Tables

|       | Counties |       |     |       |     |       |     |       | •      | one Da<br>thy Rang | -      |        |
|-------|----------|-------|-----|-------|-----|-------|-----|-------|--------|--------------------|--------|--------|
|       | 20       | 00    | 20  | 001   | 20  | 02    | 20  | 03    | 2000   | 2001               | 2002   | 2003   |
| Grade | #        | %     | #   | %     | #   | %     | #   | %     | #      | #                  | #      | #      |
| *     | 122      | 18.0  | 83  | 12.6  | 83  | 12.2  | 75  | 10.8  | *      | *                  | *      | *      |
| А     | 62       | 9.1   | 55  | 8.3   | 56  | 8.3   | 68  | 9.8   | 0      | 0                  | 0      | 0      |
| В     | 48       | 7.1   | 41  | 6.2   | 39  | 5.8   | 53  | 7.7   | 68     | 58                 | 51     | 78     |
| С     | 59       | 8.7   | 58  | 8.8   | 61  | 9.0   | 79  | 11.4  | 259    | 258                | 271    | 356    |
| D     | 54       | 8.0   | 41  | 6.2   | 48  | 7.1   | 33  | 4.8   | 426    | 326                | 367    | 260    |
| F     | 333      | 49.1  | 382 | 57.9  | 391 | 57.7  | 384 | 55.5  | 11,073 | 13,877             | 13,344 | 11,318 |
| TOTAL | 678      | 100.0 | 660 | 100.0 | 678 | 100.0 | 692 | 100.0 | 11,826 | 14,519             | 12,020 | 12,012 |

Table C-1: Comparison of Number of Counties and High Ozone Days, State of the Air Reports 2000-2003

Note: \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

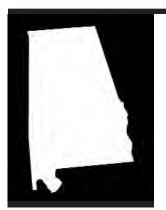
# Table C-2: Cities Deleted from the List of the 25 Most Ozone-Polluted CitiesBetween 2002 and 2003 State of the Air Reports

| City                | Ra   | nk   | Gr   | ade  | ] |
|---------------------|------|------|------|------|---|
|                     | 2003 | 2002 | 2003 | 2002 |   |
| Redding, CA*        | 97   | 21   | F    | F    |   |
| Chattanooga, TN-GA* | 36   | 24   | F    | F    |   |

\* Metropolitan Statistical Area

# Table C-3: Counties Deleted from the Lists of the 25 Most Ozone-Polluted CountiesBetween 2002 and 2003 State of the Air Reports

| County       | Ra   | nk   | Gr   | ade  |
|--------------|------|------|------|------|
|              | 2003 | 2002 | 2003 | 2002 |
| Blount, TN   | 26   | 16   | F    | F    |
| Douglas, GA  | 32   | 18   | F    | F    |
| Knox, TN     | 41   | 19   | F    | F    |
| Fayette, GA  | 48   | 23   | F    | F    |
| Maricopa, AZ | 33   | 24   | F    | F    |
| Wake, NC     | 50   | 25   | F    | F    |




## APPENDIX D State Data Tables

| Alabama5              | 52  |
|-----------------------|-----|
| Alaska5               | 54  |
| Arizona5              | 6   |
| Arkansas5             | 58  |
| California6           | 50  |
| Colorado6             | 66  |
| Connecticut           | 58  |
| Delaware7             | 0'0 |
| District of Columbia7 | 2   |
| Florida7              | '4  |
| Georgia7              | 8'8 |
| Hawaii8               | 80  |
| Idaho8                | 32  |
| Illinois8             | 34  |
| Indiana8              | 86  |
| Iowa9                 | 0   |
| Kansas9               | 02  |
| Kentucky9             | 94  |
|                       |     |

| Louisiana98       |
|-------------------|
| Maine102          |
| Maryland104       |
| Massachusetts106  |
| Michigan108       |
| Minnesota112      |
| Mississippi114    |
| Missouri116       |
| Montana118        |
| Nebraska120       |
| Nevada122         |
| New Hampshire124  |
| New Jersey126     |
| New Mexico128     |
| New York130       |
| North Carolina134 |
| North Dakota138   |

| Ohio140                      |
|------------------------------|
| Oklahoma144                  |
| Oregon146                    |
| Pennsylvania148              |
| Rhode Island152              |
| South Carolina154            |
| South Dakota156              |
| Tennessee158                 |
| Texas160                     |
| Utah164                      |
|                              |
| Vermont166                   |
| Vermont166<br>Virginia168    |
|                              |
| Virginia168                  |
| Virginia168<br>Washington170 |



#### American Lung Association of Alabama

3125 Independence Drive, Suite 325Birmingham, AL 35209(205) 933-8821www.lungusa.org/alabama

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |
| Baldwin    | 140,415        | 28,251          | 21,703         | 897                 | 768             | 113                   | 925       |  |  |
| Clay       | 14,254         | 777             | 359            | 187                 | 690             | 525                   | 202       |  |  |
| Elmore     | 65,874         | 14,053          | 7,071          | 936                 | 3,118           | 2,249                 | 721       |  |  |
| Jefferson  | 662,047        | 136,156         | 90,285         | 9,082               | 31,571          | 23,321                | 8,177     |  |  |
| Lawrence   | 34,803         | 7,385           | 4,195          | 494                 | 1,651           | 1,209                 | 410       |  |  |
| Madison    | 276,700        | 59,292          | 30,015         | 3,915               | 13,113          | 9,467                 | 3,042     |  |  |
| Mobile     | 399,843        | 91,438          | 47,919         | 6,076               | 18,430          | 13,478                | 4,554     |  |  |
| Montgomery | 223,510        | 48,085          | 26,307         | 3,188               | 10,501          | 7,612                 | 2,495     |  |  |
| Morgan     | 111,064        | 23,428          | 13,708         | 1,556               | 5,290           | 3,883                 | 1,326     |  |  |
| Shelby     | 143,293        | 31,732          | 12,179         | 2,080               | 6,761           | 4,790                 | 1,420     |  |  |
| Sumter     | 14,798         | 3,547           | 2,056          | 238                 | 662             | 492                   | 176       |  |  |
| Tuscaloosa | 164,875        | 32,135          | 18,565         | 2,131               | 7,985           | 5,728                 | 1,803     |  |  |
| TOTAL      | 2,276,444      | 483,061         | 280,340        | 32,340              | 107,712         | 78,740                | 26,572    |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# ALABAMA

# 30 21 16 1996-98 1997-99 1998-00 1999-01

**Shelby County Air Quality Trends** 

Each bar marks the Weighted Averages for Shelby County for each period.

#### Changes for 2003 Report

- Monitoring data are now being collected in Tuscaloosa County, but are no longer being collected in Geneva County.
- Elmore County's grade rose from an F to a C.
- Sumter County's grade dropped from an A to a B.

|            |        | High Ozone Days |        |          |       |          |       |          |       |          |       |
|------------|--------|-----------------|--------|----------|-------|----------|-------|----------|-------|----------|-------|
|            |        | 199             | 9-2001 |          |       | 1998-20  | 000   | 1997-    | 1999  | 1996-    | 1998  |
| County     | Orange | Red             | Purple | Wgt. Avg | Grade |
| Baldwin    | *      | *               | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Clay       | 14     | 0               | 0      | 4.7      | F     | 7.7      | F     | 7.7      | F     | 7.7      | F     |
| Elmore     | 5      | 0               | 0      | 1.7      | С     | 3.5      | F     | 2.5      | D     | 2.3      | D     |
| Jefferson  | 30     | 3               | 0      | 11.5     | F     | 16       | F     | 14       | F     | 14.3     | F     |
| Lawrence   | 10     | 0               | 0      | 3.3      | F     | 4.6      | F     | 4        | F     | 2.7      | D     |
| Madison    | 23     | 0               | 0      | 7.7      | F     | 11.5     | F     | 10.8     | F     | 6.7      | F     |
| Mobile     | 18     | 0               | 0      | 6        | F     | 8.5      | F     | 5.5      | F     | 4.7      | F     |
| Montgomery | 12     | 1               | 0      | 4.5      | F     | 8.3      | F     | 6.3      | F     | 4        | F     |
| Morgan     | *      | *               | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Shelby     | 44     | 5               | 0      | 17.2     | F     | 20.5     | F     | 15.8     | F     | 30       | F     |
| Sumter     | 1      | 0               | 0      | 0.3      | В     | 0        | А     | 0        | А     | 0        | А     |
| Tuscaloosa | *      | *               | *      | *        | *     | *        | *     | *        | *     | *        | *     |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

- (8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).
- (9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

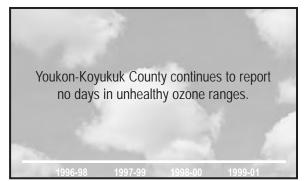
(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.



#### American Lung Association of Alaska

500 West International Airport Road, #A Anchorage, AK, 99518-1105 (907) 276-5864 www.aklung.org

| At-Risk Groups |                 |                |                                                              |                                                                                         |                                                                                                                    |                                                                                                                                                   |  |  |
|----------------|-----------------|----------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tal Pop        | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma                                          | Adult<br>Asthma                                                                         | Chronic<br>Bronchitis                                                                                              | Emphysema                                                                                                                                         |  |  |
| 6,551          | 1,859           | 478            | 127                                                          | 316                                                                                     | 194                                                                                                                | 58                                                                                                                                                |  |  |
| 6,551          | 1,859           | 478            | 127                                                          | 316                                                                                     | 194                                                                                                                | 58                                                                                                                                                |  |  |
| -              | 6,551           | 6,551 1,859    | Under         Over           6,551         1,859         478 | Under         Over         Asthma           6,551         1,859         478         127 | Under         Over         Asthma         Asthma           6,551         1,859         478         127         316 | Under         Over         Asthma         Asthma         Bronchitis           6,551         1,859         478         127         316         194 |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

<sup>(4)</sup> Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Youkon-Koyukuk County Air Quality Trends



#### Changes for 2003 Report

There were no changes from the 2002 report. Youkon-Koyukuk County continues to report no days in unhealthy ozone ranges.

|           |         |            | H                | ligh     | Oz    | one                 | Day | ys                |   |                    |   |
|-----------|---------|------------|------------------|----------|-------|---------------------|-----|-------------------|---|--------------------|---|
| County    | Orange  | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |
| Yukon-Koy | yukuk 0 | 0          | 0                | 0        | А     | 0.0                 | A   | 0.0               | A | 0.0                | A |
|           |         |            |                  |          |       |                     |     |                   |   |                    |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

- (8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).
- (9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

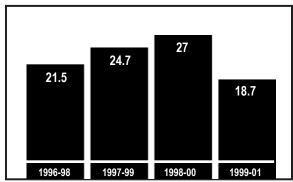


American Lung Association of Arizona/New Mexico, Inc.

102 West McDowell Road Phoenix, AZ 85003-1299 (602) 258-7505 www.lungusa.org/arizonanewmexico

|           | At-Risk Groups                                                                        |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Total Pop | 14 and<br>Under                                                                       | 65 and<br>Over                                                                                                                                                                                                                                                                                               | Pediatric<br>Asthma                                                                                                                                                                                | Adult<br>Asthma                                                                                                                                                                                                                                               | Chronic<br>Bronchitis                                                                                                                                                                                                                                                                                                     | Emphysema                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 117,755   | 25,539                                                                                | 17,365                                                                                                                                                                                                                                                                                                       | 1,714                                                                                                                                                                                              | 7,284                                                                                                                                                                                                                                                         | 4,155                                                                                                                                                                                                                                                                                                                     | 1,543                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 116,320   | 27,531                                                                                | 8,143                                                                                                                                                                                                                                                                                                        | 1,848                                                                                                                                                                                              | 6,855                                                                                                                                                                                                                                                         | 3,671                                                                                                                                                                                                                                                                                                                     | 1,006                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 51,335    | 10,640                                                                                | 10,159                                                                                                                                                                                                                                                                                                       | 713                                                                                                                                                                                                | 3,257                                                                                                                                                                                                                                                         | 1,938                                                                                                                                                                                                                                                                                                                     | 828                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 3,072,149 | 702,252                                                                               | 358,979                                                                                                                                                                                                                                                                                                      | 45,789                                                                                                                                                                                             | 187,472                                                                                                                                                                                                                                                       | 102,603                                                                                                                                                                                                                                                                                                                   | 33,503                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 843,746   | 173,681                                                                               | 119,487                                                                                                                                                                                                                                                                                                      | 11,497                                                                                                                                                                                             | 53,324                                                                                                                                                                                                                                                        | 29,839                                                                                                                                                                                                                                                                                                                    | 10,595                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 179,727   | 37,664                                                                                | 29,171                                                                                                                                                                                                                                                                                                       | 2,493                                                                                                                                                                                              | 11,339                                                                                                                                                                                                                                                        | 6,465                                                                                                                                                                                                                                                                                                                     | 2,466                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 167,517   | 28,853                                                                                | 36,816                                                                                                                                                                                                                                                                                                       | 1,958                                                                                                                                                                                              | 11,220                                                                                                                                                                                                                                                        | 6,698                                                                                                                                                                                                                                                                                                                     | 2,929                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 160,026   | 39,041                                                                                | 26,456                                                                                                                                                                                                                                                                                                       | 2,559                                                                                                                                                                                              | 9,611                                                                                                                                                                                                                                                         | 5,432                                                                                                                                                                                                                                                                                                                     | 2,106                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 4,708,575 | 1,045,201                                                                             | 606,576                                                                                                                                                                                                                                                                                                      | 68,570                                                                                                                                                                                             | 290,362                                                                                                                                                                                                                                                       | 160,801                                                                                                                                                                                                                                                                                                                   | 54,976                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|           | 117,755<br>116,320<br>51,335<br>3,072,149<br>843,746<br>179,727<br>167,517<br>160,026 | Total Pop         14 and<br>Under           117,755         25,539           116,320         27,531           51,335         10,640           3,072,149         702,252           843,746         173,681           179,727         37,664           167,517         28,853           160,026         39,041 | Total Pop14 and<br>Under65 and<br>Over117,75525,53917,365116,32027,5318,14351,33510,64010,1593,072,149702,252358,979843,746173,681119,487179,72737,66429,171167,51728,85336,816160,02639,04126,456 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>Asthma117,75525,53917,3651,714116,32027,5318,1431,84851,33510,64010,1597133,072,149702,252358,97945,789843,746173,681119,48711,497179,72737,66429,1712,493167,51728,85336,8161,958160,02639,04126,4562,559 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br>Asthma117,75525,53917,3651,7147,284116,32027,5318,1431,8486,85551,33510,64010,1597133,2573,072,149702,252358,97945,789187,472843,746173,681119,48711,49753,324179,72737,66429,1712,49311,339167,51728,85336,8161,95811,220160,02639,04126,4562,5599,611 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br>AsthmaChronic<br>Bronchitis117,75525,53917,3651,7147,2844,155116,32027,5318,1431,8486,8553,67151,33510,64010,1597133,2571,9383,072,149702,252358,97945,789187,472102,603843,746173,681119,48711,49753,32429,839179,72737,66429,1712,49311,3396,465167,51728,85336,8161,95811,2206,698160,02639,04126,4562,5599,6115,432 |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# ARIZONA

#### Maricopa County Air Quality Trends



Each bar marks the Weighted Averages for Maricopa County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now being collected in Pinal County.
- Yavapai County's grade improved from a D to a C.
- Yuma County's grade improved from a C to a B.

| County   | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-⁄<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |
|----------|--------|------------|------------------|----------|-------|---------------------|---|--------------------|---|-------------------|---|
| Cochise  | 0      | 0          | 0                | 0.0      | A     | 0.0                 | А | 0.0                | А | 0.0               | А |
| Coconino | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А | 0.0                | А | 0.0               | А |
| Gila     | *      | *          | *                | *        | *     | *                   | * | *                  | * | *                 | * |
| Maricopa | 56     | 0          | 0                | 18.7     | F     | 27                  | F | 24.7               | F | 21.5              | F |
| Pima     | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В | 0.7                | В | 0.3               | В |
| Pinal    | *      | *          | *                | *        | *     | *                   | * | *                  | * | *                 | * |
| Yavapai  | 4      | 0          | 0                | 1.3      | С     | 2.3                 | D | *                  | * | *                 | * |
| Yuma     | 1      | 0          | 0                | 0.3      | В     | 2.0                 | С | 2.0                | С | 2.0               | С |
|          |        |            |                  |          |       |                     |   |                    |   |                   |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

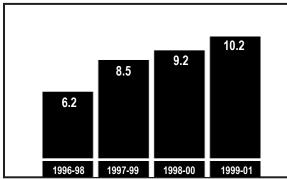


#### American Lung Association of Arkansas

211 Natural Resources Drive Little Rock, AR 72205-1539 (501) 224-5864 www.lungusa.org/arkansas

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Crittenden | 50,866         | 13,216          | 5,058          | 876                 | 2,438           | 1,604                 | 511       |  |  |  |  |  |
| Montgomery | 9,245          | 1,793           | 1,749          | 120                 | 499             | 352                   | 145       |  |  |  |  |  |
| Newton     | 8,608          | 1,679           | 1,276          | 118                 | 454             | 315                   | 119       |  |  |  |  |  |
| Pulaski    | 361,474        | 76,038          | 41,425         | 5,044               | 18,833          | 12,475                | 4,087     |  |  |  |  |  |
| TOTAL      | 430,193        | 92,726          | 49,508         | 6,158               | 22,223          | 14,746                | 4,863     |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# ARKANSAS

#### Crittenden County Air Quality Trends



Each bar marks the Weighted Averages for Crittenden County for each period.

#### **Changes for 2003 Report**

- Montgomery County's grade improved from a B to an A.
- Newton County's grade improved from a C to a B.

|            |        |     | High Ozone Days |          |       |          |           |          |       |           |       |
|------------|--------|-----|-----------------|----------|-------|----------|-----------|----------|-------|-----------|-------|
|            |        |     | 9-2001          |          |       | 1        | 1998-2000 |          | 1999  | 1996-1998 |       |
| County     | Orange | Red | Purple          | Wgt. Avg | Grade | Wgt. Avg | Grade     | Wgt. Avg | Grade | Wgt. Avg  | Grade |
| Crittenden | 29     | 1   | 0               | 10.2     | F     | 9.2      | F         | 8.5      | F     | 6.2       | F     |
| Montgomery | 0      | 0   | 0               | 0.0      | А     | 0.3      | В         | 0.3      | В     | 0.3       | В     |
| Newton     | 2      | 0   | 0               | 0.7      | В     | 1.0      | С         | 1.0      | С     | 0.3       | В     |
| Pulaski    | 25     | 1   | 0               | 8.8      | F     | 8.2      | F         | 3.0      | D     | 1.3       | С     |
|            |        |     |                 |          |       |          |           |          |       |           |       |
|            |        |     |                 |          |       |          |           |          |       |           |       |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

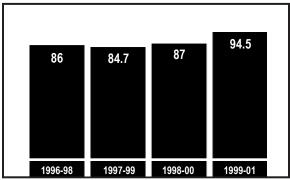


#### American Lung Association of California

424 Pendleton Way Oakland, CA 94621-2189 (510) 638-5864 www.californialung.org

|              |           | At-             | Risk           | Grou                | ps              |                       |           |  |
|--------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|
| County       | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |
| Alameda      | 1,443,741 | 299,795         | 147,591        | 19,608              | 77,403          | 49,381                | 15,223    |  |
| Amador       | 35,100    | 5,515           | 6,329          | 399                 | 2,013           | 1,376                 | 550       |  |
| Butte        | 203,171   | 39,750          | 32,056         | 2,697               | 11,095          | 7,324                 | 2,717     |  |
| Calaveras    | 40,554    | 7,425           | 7,373          | 511                 | 2,266           | 1,583                 | 655       |  |
| Colusa       | 18,804    | 4,827           | 2,135          | 328                 | 919             | 595                   | 200       |  |
| Contra Costa | 948,816   | 211,176         | 107,272        | 13,924              | 49,727          | 32,487                | 10,815    |  |
| El Dorado    | 156,299   | 33,364          | 19,334         | 2,256               | 8,267           | 5,519                 | 1,946     |  |
| Fresno       | 799,407   | 214,255         | 79,209         | 14,180              | 38,632          | 24,612                | 7,729     |  |
| Glenn        | 26,453    | 6,672           | 3,431          | 450                 | 1,312           | 862                   | 307       |  |
| Imperial     | 142,361   | 36,894          | 14,305         | 2,474               | 6,945           | 4,414                 | 1,383     |  |
| Inyo         | 17,945    | 3,505           | 3,429          | 242                 | 984             | 681                   | 286       |  |
| Kern         | 661,645   | 176,910         | 62,054         | 11,689              | 31,998          | 20,330                | 6,250     |  |
| Kings        | 129,461   | 31,574          | 9,557          | 2,075               | 6,492           | 3,991                 | 1,062     |  |
| Lake         | 58,309    | 11,507          | 11,359         | 778                 | 3,209           | 2,221                 | 937       |  |
| Los Angeles  | 9,519,338 | 2,263,330       | 926,673        | 147,539             | 486,627         | 308,088               | 93,587    |  |
| Madera       | 123,109   | 30,096          | 13,596         | 2,017               | 6,178           | 3,986                 | 1,307     |  |
| Marin        | 247,289   | 42,090          | 33,432         | 2,775               | 14,115          | 9,463                 | 3,370     |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on

national rates (NHIS) applied to county population estimates (US Census). (4) **Adult asthma** estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# CALIFORNIA

Fresno County Air Quality Trends



Each bar marks the Weighted Averages for Fresno County for each period.

#### **Changes for 2003 Report**

- San Luis Obispo County improved from an F to an A.
- Glenn County improved from a C to a B.
- The grades in Contra Costa County, Orange County, Santa Barbara County, Santa Clara County, and Solano County all improved from an F to a D.
- San Benito County improved from a D to a C.
- Sonoma County improved from a D to a B
- The grades in Colusa County and Inyo County fell from a B to a C.

|              |        |            | - F              | ligh     | Oz    | one                | Day | ys                 |   |                    |   |
|--------------|--------|------------|------------------|----------|-------|--------------------|-----|--------------------|---|--------------------|---|
| County       | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-2<br>Wgt. Avg |     | 1997-⁄<br>Wgt. Avg |   | 1996-⁄<br>Wgt. Avg |   |
| Alameda      | 6      | 3          | 0                | 3.5      | F     | 6                  | F   | 5.2                | F | 7                  | F |
| Amador       | 27     | 2          | 0                | 10       | F     | 19.5               | F   | 15.8               | F | 16                 | F |
| Butte        | 17     | 0          | 0                | 5.7      | F     | 4                  | F   | 2                  | С | .3                 | В |
| Calaveras    | 38     | 2          | 0                | 13.7     | F     | 22                 | F   | 17.7               | F | 17.8               | F |
| Colusa       | 4      | 0          | 0                | 1.3      | С     | .7                 | В   | 0.7                | В | 1.7                | С |
| Contra Costa | 6      | 2          | 0                | 3        | D     | 5.2                | F   | 4.8                | F | 4.5                | F |
| El Dorado    | 96     | 10         | 0                | 37       | F     | 34.8               | F   | 29.7               | F | 30.6               | F |
| Fresno       | 202    | 53         | 1                | 94.5     | F     | 87                 | F   | 84.7               | F | 86                 | F |
| Glenn        | 2      | 0          | 0                | 0.7      | В     | 1                  | С   | 1                  | С | .3                 | В |
| Imperial     | 29     | 6          | 0                | 12.7     | F     | 12.2               | F   | 28                 | F | 35.7               | F |
| Inyo         | 3      | 0          | 0                | 1        | С     | .7                 | В   | 0.7                | В | .3                 | В |
| Kern         | 219    | 40         | 0                | 93       | F     | 94.7               | F   | 85.8               | F | 100                | F |
| Kings        | 87     | 7          | 0                | 32.5     | F     | 37.2               | F   | 28.2               | F | 48.6               | F |
| Lake         | 0      | 0          | 0                | 0        | А     | 0                  | А   | 0                  | А | 0                  | А |
| Los Angeles  | 82     | 20         | 4                | 40       | F     | 44.5               | F   | 44.7               | F | 55                 | F |
| Madera       | 32     | 0          | 0                | 10.7     | F     | 11                 | F   | 8                  | F | 13.7               | F |
| Marin        | 0      | 0          | 0                | 0        | А     | 0                  | А   | 0                  | А | 0                  | А |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.



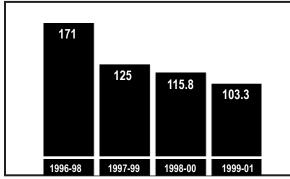
#### American Lung Association of California

424 Pendleton Way Oakland, CA 94621-2189 (510) 638-5864 www.californialung.org

|                |           | At-             | Risk           | Grou                | ps              |                       |           |
|----------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County         | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Mariposa       | 17,130    | 2,963           | 2,940          | 205                 | 969             | 664                   | 263       |
| Mendocino      | 86,265    | 17,837          | 11,709         | 1,219               | 4,607           | 3,097                 | 1,131     |
| Merced         | 210,554   | 60,546          | 20,004         | 4,019               | 9,808           | 6,248                 | 1,959     |
| Mono           | 12,853    | 2,460           | 976            | 163                 | 700             | 447                   | 127       |
| Monterey       | 401,762   | 95,856          | 40,299         | 6,307               | 20,451          | 12,983                | 4,003     |
| Napa           | 124,279   | 24,710          | 19,086         | 1,659               | 6,776           | 4,521                 | 1,687     |
| Nevada         | 92,033    | 16,986          | 16,049         | 1,177               | 5,113           | 3,527                 | 1,423     |
| Orange         | 2,846,289 | 652,061         | 280,763        | 42,494              | 147,632         | 93,937                | 28,795    |
| Placer         | 248,399   | 54,409          | 32,560         | 3,636               | 13,082          | 8,671                 | 3,082     |
| Plumas         | 20,824    | 3,738           | 3,725          | 261                 | 1,165           | 810                   | 332       |
| Riverside      | 1,545,387 | 394,983         | 195,964        | 25,919              | 77,032          | 49,931                | 17,278    |
| Sacramento     | 1,223,499 | 283,266         | 135,875        | 18,669              | 63,132          | 40,639                | 13,188    |
| San Benito     | 53,234    | 14,486          | 4,315          | 948                 | 2,558           | 1,618                 | 474       |
| San Bernardino | 1,709,434 | 465,138         | 146,459        | 30,528              | 82,110          | 51,903                | 15,430    |
| San Diego      | 2,813,833 | 611,119         | 313,750        | 40,018              | 148,788         | 94,794                | 30,028    |
| San Francisco  | 776,733   | 94,010          | 106,111        | 6,238               | 47,324          | 30,220                | 9,796     |
| San Joaquin    | 563,598   | 145,367         | 59,799         | 9,654               | 27,722          | 17,821                | 5,774     |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.


(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on

national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>CALIFORNIA</u>

#### San Bernardino County Air Quality Trends



Each bar marks the Weighted Averages for San Bernardino County for each period.

#### **Changes for 2003 Report**

- San Luis Obispo County improved from an F to an A.
- Glenn County improved from a C to a B.
- The grades in Contra Costa County, Orange County, Santa Barbara County, Santa Clara County, and Solano County all improved from an F to a D.
- San Benito County improved from a D to a C.
- Sonoma County improved from a D to a B
- The grades in Colusa County and Inyo County fell from a B to a C.

|              |        |            | 1                | ligh     | Oz    | zone               | Da | ys                 |   |                    |   |
|--------------|--------|------------|------------------|----------|-------|--------------------|----|--------------------|---|--------------------|---|
| County       | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-2<br>Wgt. Avg |    | 1997-1<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |
| Mariposa     | 45     | 1          | 0                | 15.5     | F     | 17.5               | F  | 15.3               | F | 17                 | F |
| Mendocino    | 0      | 0          | 0                | 0        | А     | 0                  | А  | 0                  | А | 0                  | А |
| Merced       | 97     | 9          | 0                | 36.8     | F     | 40.3               | F  | 27.8               | F | 26.7               | F |
| Mono         | *      | *          | *                | *        | *     | *                  | *  | *                  | * | 0                  | А |
| Monterey     | 0      | 0          | 0                | 0        | Α     | 0                  | А  | 0                  | А | 0                  | А |
| Napa         | 1      | 0          | 0                | 0.3      | В     | 0.7                | В  | 0.7                | В | .3                 | В |
| Nevada       | 77     | 4          | 0                | 27.7     | F     | 24.8               | F  | 20.7               | F | 20                 | F |
| Orange       | 8      | 1          | 0                | 3.2      | D     | 4                  | F  | 3.5                | F | 6                  | F |
| Placer       | 68     | 5          | 0                | 25.2     | F     | 24                 | F  | 19.2               | F | 19.3               | F |
| Plumas       | 0      | 0          | 0                | 0        | Α     | 0                  | А  | 0                  | А | 0                  | А |
| Riverside    | 160    | 44         | 4                | 78       | F     | 78.3               | F  | 94.3               | F | 142.6              | F |
| Sacramento   | 67     | 7          | 1                | 26.5     | F     | 29.8               | F  | 24.3               | F | 36.6               | F |
| San Benito   | 3      | 0          | 0                | 1        | С     | 2.3                | D  | 2.7                | D | 4.7                | F |
| San Bernadin | io 179 | 58         | 22               | 103.3    | F     | 115.8              | F  | 125                | F | 171                | F |
| San Diego    | 46     | 3          | 0                | 16.8     | F     | 24.8               | F  | 24.7               | F | 26.3               | F |
| San Francisc | o 0    | 0          | 0                | 0        | Α     | 0                  | А  | 0                  | А | 0                  | А |
| San Joaquin  | 13     | 2          | 0                | 5.3      | F     | 7                  | F  | 7                  | F | 8                  | F |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

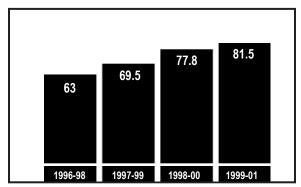


#### American Lung Association of California

424 Pendleton Way Oakland, CA 94621-2189 (510) 638-5864 www.californialung.org

|                 |            | At·             | Risk           | Grou                | ips             |                       |           |
|-----------------|------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County          | Total Pop  | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| San Luis Obispo | 246,681    | 43,444          | 35,685         | 2,954               | 13,843          | 9,076                 | 3,210     |
| San Mateo       | 707,161    | 136,483         | 88,085         | 8,964               | 38,910          | 25,311                | 8,488     |
| Santa Barbara   | 399,347    | 83,457          | 50,765         | 5,502               | 21,408          | 13,772                | 4,601     |
| Santa Clara     | 1,682,585  | 351,586         | 160,527        | 23,027              | 89,840          | 56,875                | 16,966    |
| Santa Cruz      | 255,602    | 50,251          | 25,487         | 3,359               | 13,846          | 8,888                 | 2,745     |
| Shasta          | 163,256    | 34,530          | 24,861         | 2,360               | 8,676           | 5,843                 | 2,221     |
| Siskiyou        | 44,301     | 8,384           | 8,040          | 587                 | 2,438           | 1,686                 | 694       |
| Solano          | 394,542    | 93,287          | 37,426         | 6,185               | 20,088          | 12,872                | 3,975     |
| Sonoma          | 458,614    | 92,476          | 57,977         | 6,202               | 24,772          | 16,313                | 5,634     |
| Stanislaus      | 446,997    | 116,074         | 46,697         | 7,699               | 21,925          | 14,077                | 4,534     |
| Sutter          | 78,930     | 18,936          | 9,755          | 1,265               | 4,009           | 2,619                 | 904       |
| Tehama          | 56,039     | 12,527          | 8,923          | 850                 | 2,930           | 1,969                 | 762       |
| Tulare          | 368,021    | 103,425         | 35,917         | 6,871               | 17,349          | 11,078                | 3,503     |
| Tuolumne        | 54,501     | 8,986           | 10,067         | 625                 | 3,122           | 2,136                 | 862       |
| Ventura         | 753,197    | 179,707         | 76,804         | 11,848              | 38,360          | 24,712                | 7,862     |
| Yolo            | 168,660    | 35,405          | 15,782         | 2,349               | 8,944           | 5,596                 | 1,625     |
| TOTAL           | 33,596,342 | 7,727,578       | 3,562,317      | 507,706             | 1,737,611       | 1,111,568             | 351,680   |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## CALIFORNIA

Tulare County Air Quality Trends



Each bar marks the Weighted Averages for Tulare County for each period.

#### **Changes for 2003 Report**

- San Luis Obispo County improved from an F to an A.
- Glenn County improved from a C to a B.
- The grades in Contra Costa County, Orange County, Santa Barbara County, Santa Clara County, and Solano County all improved from an F to a D.
- San Benito County improved from a D to a C.
- Sonoma County improved from a D to a B
- The grades in Colusa County and Inyo County fell from a B to a C.

|               |        |            | H                | ligh     | Oz    | one  | Day                | /S                |   |                    |   |
|---------------|--------|------------|------------------|----------|-------|------|--------------------|-------------------|---|--------------------|---|
| County        | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade |      | 3-2000<br>vg Grade | 1997-<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |
| San Luis Obis | spo O  | 0          | 0                | 0        | А     | 7.2  | F                  | 7.2               | F | 10.3               | F |
| San Mateo     | 0      | 0          | 0                | 0        | А     | 0    | А                  | 0                 | А | 0                  | А |
| Santa Barbar  | a 5    | 2          | 0                | 2.7      | D     | 3.8  | F                  | 4.7               | F | 9.7                | F |
| Santa Clara   | 8      | 0          | 0                | 2.7      | D     | 4.7  | F                  | 4.3               | F | 5.3                | F |
| Santa Cruz    | 0      | 0          | 0                | 0        | А     | 0    | А                  | 0                 | А | 0.7                | В |
| Shasta        | 15     | 0          | 0                | 5        | F     | 20.5 | F                  | 22.3              | F | 21.7               | F |
| Siskiyou      | 0      | 0          | 0                | 0        | А     | 0    | А                  | 0                 | А | 0                  | А |
| Solano        | 7      | 1          | 0                | 2.8      | D     | 5.5  | F                  | 5.5               | F | 4                  | F |
| Sonoma        | 2      | 0          | 0                | 0.7      | В     | 2.5  | D                  | 2.8               | D | 2                  | С |
| Stanislaus    | 32     | 1          | 0                | 11.2     | F     | 18   | F                  | 17.2              | F | 19                 | F |
| Sutter        | 12     | 0          | 0                | 4        | F     | 5.3  | F                  | 3.7               | F | 5                  | F |
| Tehama        | 21     | 2          | 0                | 8        | F     | 11.2 | F                  | 10.8              | F | 3.7                | F |
| Tulare        | 216    | 19         | 0                | 81.5     | F     | 77.8 | F                  | 69.5              | F | 63                 | F |
| Tuolumne      | 56     | 0          | 0                | 18.7     | F     | 25.8 | F                  | 19.7              | F | 18                 | F |
| Ventura       | 70     | 6          | 0                | 26.3     | F     | 29.3 | F                  | 35                | F | 52.2               | F |
| Yolo          | 10     | 0          | 0                | 3.3      | F     | 4.3  | F                  | 3.7               | F | 2.7                | D |
|               |        |            |                  |          |       |      |                    |                   |   |                    |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

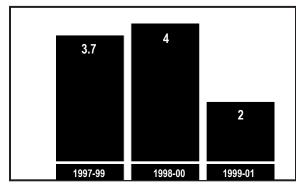
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of Colorado

1600 Race StreetDenver, CO 80206-1198(303) 388-4327www.alacolo.org

|           |           | At-             | Risk           | Grou                | ps              |                       |           |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Adams     | 363,857   | 88,074          | 28,382         | 5,749               | 21,301          | 11,498                | 3,216     |
| Arapahoe  | 487,967   | 108,007         | 41,929         | 7,209               | 29,306          | 16,209                | 4,825     |
| Boulder   | 291,288   | 55,776          | 22,670         | 3,696               | 18,439          | 9,954                 | 2,751     |
| Denver    | 554,636   | 103,557         | 62,426         | 6,734               | 35,199          | 19,465                | 6,013     |
| Douglas   | 175,766   | 48,109          | 7,322          | 3,068               | 9,973           | 5,255                 | 1,283     |
| El Paso   | 516,929   | 119,440         | 44,787         | 7,879               | 30,639          | 16,791                | 4,924     |
| Jefferson | 527,056   | 109,855         | 50,826         | 7,382               | 32,196          | 18,123                | 5,670     |
| La Plata  | 43,941    | 7,961           | 4,128          | 551                 | 2,783           | 1,551                 | 471       |
| Larimer   | 251,494   | 49,483          | 24,037         | 3,304               | 15,670          | 8,628                 | 2,575     |
| Montezuma | 23,830    | 5,362           | 3,299          | 363                 | 1,396           | 832                   | 307       |
| Weld      | 180,936   | 42,623          | 16,240         | 2,822               | 10,614          | 5,825                 | 1,726     |
| TOTAL     | 3,417,700 | 738,247         | 306,046        | 48,756              | 207,515         | 114,130               | 33,762    |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### COLORADO

#### Jefferson County Air Quality Trends



Each bar marks the Weighted Averages for Jefferson County for each period.

#### **Changes for 2003 Report**

- Adams County's grade improved from a B to an A.
- The grades for Arapaho County, Boulder County, and Douglas County all improved from a C to a B.
- Denver County's grade improved from a C to an A.
- Jefferson County's grade improved from an F to a C.

|           |        | High Ozone Days |                  |          |       |     |                    |                   |   |                    |   |  |  |
|-----------|--------|-----------------|------------------|----------|-------|-----|--------------------|-------------------|---|--------------------|---|--|--|
| County    | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade |     | 3-2000<br>vg Grade | -1997<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |  |  |
| Adams     | 0      | 0               | 0                | 0.0      | А     | 0.7 | В                  | 0.7               | В | 0.7                | В |  |  |
| Arapahoe  | 2      | 0               | 0                | 0.7      | В     | 1.3 | С                  | 0.7               | В | 0.7                | В |  |  |
| Boulder   | 1      | 0               | 0                | 0.3      | В     | 2.0 | С                  | 2.0               | С | 1.7                | С |  |  |
| Denver    | 0      | 0               | 0                | 0.0      | А     | 1.3 | С                  | 1.3               | С | 1.3                | С |  |  |
| Douglas   | 1      | 0               | 0                | 0.3      | В     | 1.0 | С                  | 1.0               | С | 1.3                | С |  |  |
| El Paso   | 0      | 0               | 0                | 0.0      | А     | 0.0 | А                  | 0.0               | А | 0.0                | А |  |  |
| Jefferson | 6      | 0               | 0                | 2.0      | С     | 4.0 | F                  | 3.7               | F | *                  | * |  |  |
| La Plata  | *      | *               | *                | *        | *     | *   | *                  | *                 | * | *                  | * |  |  |
| Larimer   | 3      | 0               | 0                | 1.0      | С     | 1.3 | С                  | 0.7               | В | 3.0                | D |  |  |
| Montezuma | 0      | 0               | 0                | 0.0      | А     | 0.0 | А                  | 0.0               | А | 0.3                | В |  |  |
| Weld      | 0      | 0               | 0                | 0.0      | А     | 0.0 | А                  | 0.0               | А | 0.0                | А |  |  |
|           |        |                 |                  |          |       |     |                    |                   |   |                    |   |  |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

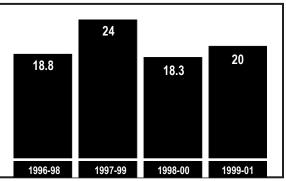


#### American Lung Association of Connecticut

45 Ash Street East Hartford, CT 06108-3272 (860) 289-5401 www.alact.org

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Fairfield  | 882,567        | 193,494         | 117,163        | 12,510              | 52,302          | 30,909                | 10,868    |  |  |  |  |  |
| Hartford   | 857,183        | 176,765         | 125,628        | 11,659              | 51,192          | 30,669                | 11,161    |  |  |  |  |  |
| Litchfield | 182,193        | 37,342          | 25,941         | 2,480               | 10,844          | 6,587                 | 2,411     |  |  |  |  |  |
| Middlesex  | 155,071        | 30,127          | 21,085         | 1,990               | 9,480           | 5,627                 | 1,983     |  |  |  |  |  |
| New Haven  | 824,008        | 169,317         | 119,292        | 11,153              | 49,434          | 29,351                | 10,553    |  |  |  |  |  |
| New London | 259,088        | 53,050          | 33,765         | 3,497               | 15,677          | 9,146                 | 3,147     |  |  |  |  |  |
| Tolland    | 136,364        | 26,375          | 13,869         | 1,743               | 8,540           | 4,772                 | 1,472     |  |  |  |  |  |
| TOTAL      | 3,296,474      | 686,470         | 456,743        | 45,031              | 197,469         | 117,060               | 41,594    |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## <u>CONNECTICUT</u>

#### Fairfield County Air Quality Trends



Each bar marks the Weighted Averages for Fairfield County for each period.

#### **Changes for 2003 Report**

There were no changes in grades or monitors from the 2002 report.

|            |        |            | Н                | ligh     | Oz    | one  | Day                | /S                |   |                    |   |
|------------|--------|------------|------------------|----------|-------|------|--------------------|-------------------|---|--------------------|---|
| County     | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade |      | 3-2000<br>vg Grade | 1997-<br>Wgt. Avg |   | 1996-⁄<br>Wgt. Avg |   |
| Fairfield  | 38     | 12         | 2                | 20.0     | F     | 18.3 | F                  | 24.0              | F | 18.8               | F |
| Hartford   | 19     | 2          | 0                | 7.3      | F     | 5.2  | F                  | 7.3               | F | 3.5                | F |
| Litchfield | 18     | 0          | 0                | 6.0      | F     | 8.7  | F                  | 10.3              | F | 7.7                | F |
| Middlesex  | 25     | 6          | 1                | 12.0     | F     | 9.7  | F                  | 12.0              | F | 7.8                | F |
| New Haven  | 28     | 7          | 3                | 14.8     | F     | 13.3 | F                  | 17.8              | F | 13.0               | F |
| New London | 18     | 2          | 1                | 7.7      | F     | 6.5  | F                  | 12.0              | F | 10.2               | F |
| Tolland    | 20     | 3          | 0                | 8.2      | F     | 7.3  | F                  | 11.0              | F | 7.3                | F |
|            |        |            |                  |          |       |      |                    |                   |   |                    |   |
|            |        |            |                  |          |       |      |                    |                   |   |                    |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

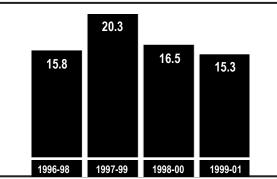


#### American Lung Association of Delaware

1021 Gilpin Avenue, Suite 202
Wilmington, DE 19806-3280
(302) 655-7258
www.alade.org

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |
| Kent       | 126,697        | 28,904          | 14,801         | 1,910               | 7,044           | 4,252                 | 1,410     |  |  |  |  |
| New Castle | 500,265        | 104,495         | 57,903         | 6,899               | 28,817          | 17,241                | 5,611     |  |  |  |  |
| Sussex     | 156,638        | 29,219          | 29,022         | 1,952               | 8,767           | 5,972                 | 2,416     |  |  |  |  |
| TOTAL      | 783,600        | 162,618         | 101,726        | 10,761              | 44,628          | 27,466                | 9,437     |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### DELAWARE

#### New Castle County Air Quality Trends



Each bar marks the Weighted Averages for New Castle County for each period.

#### **Changes for 2003 Report**

New Castle County had the worst record of unhealthy ozone days for this report period; in the 2002 report, it was tied with Sussex County.

|            |        |            | H                | ligh     | Ozo   | one  | Day                | <b>y</b> s         |   |                    |   |
|------------|--------|------------|------------------|----------|-------|------|--------------------|--------------------|---|--------------------|---|
| County     | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1    | 8-2000<br>vg Grade | 1997-′<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |
| Kent       | 21     | 5          | 0                | 9.5      | F     | 12.5 | F                  | 15.5               | F | 13.3               | F |
| New Castle | 37     | 6          | 0                | 15.3     | F     | 16.5 | F                  | 20.3               | F | 15.8               | F |
| Sussex     | 36     | 1          | 0                | 12.5     | F     | 16.5 | F                  | 19.2               | F | 13.8               | F |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

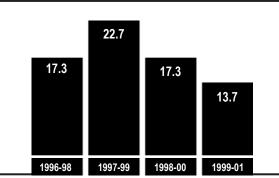


#### American Lung Association of the District of Columbia

475 H Street, NW Washington, DC 20001-2617 (202) 682-5864 www.aladc.org

|                         | <b>At-Risk Groups</b> |                 |                |                     |                 |                       |           |  |  |  |
|-------------------------|-----------------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|
| District of<br>Columbia | Total Pop             | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |
| District of Columbia    | 572,059               | 97,939          | 69,898         | 6,359               | 33,828          | 20,830                | 6,684     |  |  |  |
| TOTAL                   | 572,059               | 97,939          | 69,898         | 6,359               | 33,828          | 20,830                | 6,684     |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## DISTRICT OF COLUMBIA

#### District of Columbia Air Quality Trends



Each bar marks the Weighted Averages for District of Columbia for each period.

#### **Changes for 2003 Report**

There were no changes in grades or monitors from the 2002 report.

|                         |        |   | H                | ligh     | Oz    | one  | Day               | ys                 |   |                    |   |
|-------------------------|--------|---|------------------|----------|-------|------|-------------------|--------------------|---|--------------------|---|
| District of<br>Columbia | Orange |   | 9-2001<br>Purple | Wgt. Avg | Grade |      | -2000<br>/g Grade | 1997-⁄<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |
| District of<br>Columbia | 35     | 4 | 0                | 13.7     | F     | 17.3 | F                 | 22.7               | F | 17.3               | F |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

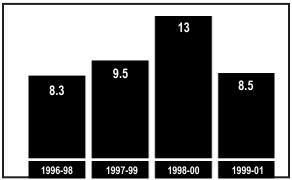
<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.



#### American Lung Association of Florida

5526 Arlington Road Jacksonville, FL 32211-5216 (904) 743-2933 www.lungfla.org

|              |           | At-             | Risk           | Grou                | ps              |                       |           |
|--------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County       | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Alachua      | 217,955   | 36,187          | 20,918         | 2,430               | 10,067          | 7,654                 | 2,166     |
| Baker        | 22,259    | 5,010           | 2,050          | 338                 | 942             | 736                   | 225       |
| Вау          | 148,217   | 29,413          | 19,817         | 1,971               | 6,520           | 5,293                 | 1,849     |
| Brevard      | 476,230   | 86,252          | 94,681         | 5,790               | 21,250          | 18,314                | 7,570     |
| Broward      | 1,623,018 | 322,315         | 261,109        | 21,176              | 71,153          | 58,860                | 21,947    |
| Columbia     | 56,513    | 11,708          | 7,909          | 793                 | 2,441           | 2,004                 | 723       |
| Dade         | 2,105,604 | 442,032         | 299,935        | 32,718              | 82,711          | 113,330               | 16,195    |
| Duval        | 778,879   | 172,032         | 81,753         | 11,336              | 33,296          | 26,133                | 8,220     |
| Escambia     | 294,410   | 57,446          | 39,169         | 3,831               | 13,000          | 10,464                | 3,585     |
| Highlands    | 87,366    | 13,634          | 28,833         | 926                 | 3,921           | 3,749                 | 1,943     |
| Hillsborough | 998,948   | 212,554         | 119,673        | 13,999              | 43,166          | 34,396                | 11,393    |
| Holmes       | 18,564    | 3,488           | 2,749          | 237                 | 825             | 678                   | 246       |
| Lake         | 210,528   | 35,754          | 55,603         | 2,362               | 9,465           | 8,606                 | 4,031     |
| Lee          | 440,888   | 72,228          | 112,111        | 4,777               | 20,074          | 18,098                | 8,308     |
| Leon         | 239,452   | 42,292          | 19,891         | 2,821               | 10,946          | 8,255                 | 2,246     |
| Manatee      | 264,002   | 45,938          | 65,647         | 3,022               | 11,834          | 10,608                | 4,825     |
| Marion       | 258,916   | 45,557          | 63,488         | 3,065               | 11,522          | 10,343                | 4,708     |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on

national rates (NHIS) applied to county population estimates (US Census). (4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Escambia County Air Quality Trends



Each bar marks the Weighted Averages for Escambia County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now being collected in Highlands County and Wakulla County.
- Monitoring data are no longer being collected in St. Johns County.
- Thirteen counties improved their grades:
  - -Alachua County made the biggest jump from an F to a B. -The grades for Duval County, Miami-Dade County, Orange County, Pasco County, and Polk County improved from an F to a C.
  - -The grades for Brevard County, Lee County, and Seminole County improved from a D to a C.
  - -Osceola County's grade improved from a D to a B.
  - -The grades for Holmes County, Palm Beach County and Volusia County improved from a C to a B.

٦

|              |        | High Ozone Days |                  |          |       |      |                    |                   |   |                   |   |  |
|--------------|--------|-----------------|------------------|----------|-------|------|--------------------|-------------------|---|-------------------|---|--|
| County       | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade |      | 3-2000<br>vg Grade | 1997-<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |  |
| Alachua      | 2      | 0               | 0                | 0.7      | В     | 3.7  | F                  | 3.7               | F | *                 | * |  |
| Baker        | 1      | 0               | 0                | 0.3      | В     | 0.3  | В                  | *                 | * | *                 | * |  |
| Bay          | *      | *               | *                | *        | *     | *    | *                  | *                 | * | *                 | * |  |
| Brevard      | 5      | 0               | 0                | 1.7      | С     | 2.2  | D                  | 2.5               | D | 1.8               | С |  |
| Broward      | 4      | 0               | 0                | 1.3      | С     | 1.3  | С                  | 1.0               | С | 1.0               | С |  |
| Columbia     | *      | *               | *                | *        | *     | *    | *                  | *                 | * | *                 | * |  |
| Dade         | *      | *               | *                | *        | *     | *    | *                  | *                 | * | 4.0               | F |  |
| Duval        | 4      | 0               | 0                | 1.3      | С     | 5.0  | F                  | 6.0               | F | 5.3               | F |  |
| Escambia     | 24     | 1               | 0                | 8.5      | F     | 13.0 | F                  | 9.5               | F | 8.3               | F |  |
| Highlands    | *      | *               | *                | *        | *     | *    | *                  | *                 | * | *                 | * |  |
| Hillsborough | 16     | 1               | 0                | 5.8      | F     | 8.8  | F                  | 8.8               | F | 7.2               | F |  |
| Holmes       | 2      | 0               | 0                | 0.7      | В     | 2.0  | С                  | *                 | * | *                 | * |  |
| Lake         | *      | *               | *                | *        | *     | *    | *                  | *                 | * | *                 | * |  |
| Lee          | 4      | 0               | 0                | 1.3      | С     | 2.7  | D                  | 2.3               | D | 1.3               | С |  |
| Leon         | 2      | 0               | 0                | 0.7      | В     | 0.7  | В                  | 0.7               | В | 0.0               | А |  |
| Manatee      | 9      | 1               | 0                | 3.5      | F     | 4.3  | F                  | 3.0               | D | 2.2               | D |  |
| Marion       | 3      | 0               | 0                | 1.0      | С     | 1.7  | С                  | *                 | * | *                 | * |  |
|              |        |                 |                  |          |       |      |                    |                   |   |                   |   |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

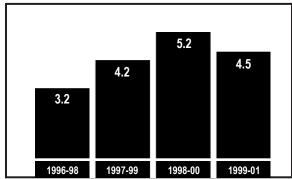


#### American Lung Association of Florida

5526 Arlington Road Jacksonville, FL 32211-5216 (904) 743-2933 www.lungfla.org

|             |            | At·             | Risk           | Grou                | ps              |                       |           |
|-------------|------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County      | Total Pop  | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Miami-Dade  | 2,253,362  | 464,377         | 300,552        | 30,924              | 97,776          | 78,927                | 27,288    |
| Orange      | 896,344    | 190,288         | 89,959         | 12,517              | 38,815          | 30,087                | 9,101     |
| Osceola     | 172,493    | 38,375          | 19,709         | 2,556               | 7,318           | 5,818                 | 1,910     |
| Palm Beach  | 1,131,184  | 201,715         | 262,076        | 13,297              | 50,407          | 44,389                | 19,460    |
| Pasco       | 344,765    | 58,218          | 92,403         | 3,844               | 15,494          | 14,102                | 6,631     |
| Pinellas    | 921,482    | 147,814         | 207,563        | 9,818               | 42,340          | 37,080                | 15,965    |
| Polk        | 483,924    | 98,223          | 88,738         | 6,537               | 20,920          | 17,806                | 7,151     |
| Saint Johns | 119,685    | 23,394          | 20,428         | 1,483               | 5,233           | 4,202                 | 1,575     |
| St. Lucie   | 192,695    | 36,312          | 43,753         | 2,410               | 8,460           | 7,477                 | 3,293     |
| Santa Rosa  | 117,743    | 25,681          | 12,972         | 1,729               | 5,039           | 4,026                 | 1,329     |
| Sarasota    | 325,957    | 43,685          | 102,583        | 2,921               | 15,313          | 14,401                | 7,203     |
| Seminole    | 365,196    | 76,841          | 38,853         | 5,121               | 15,878          | 12,569                | 4,036     |
| Volusia     | 443,343    | 73,801          | 97,811         | 4,969               | 20,127          | 17,599                | 7,549     |
| Wakulla     | 22,863     | 4,764           | 2,350          | 324                 | 993             | 787                   | 253       |
| TOTAL       | 16,032,785 | 3,117,328       | 2,675,086      | 210,042             | 697,244         | 626,789               | 212,923   |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## FLORIDA

#### Sarasota County Air Quality Trends



Each bar marks the Weighted Averages for Sarasota County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now being collected in Highlands County and Wakulla County.
- Monitoring data are no longer being collected in St. Johns County.
- Thirteen counties improved their grades:
  - -Alachua County made the biggest jump from an F to a B. -The grades for Duval County, Miami-Dade County, Orange County, Pasco County, and Polk County improved from an F to a C.
  - -The grades for Brevard County, Lee County, and Seminole County improved from a D to a C.
  - -Osceola County's grade improved from a D to a B.
  - -The grades for Holmes County, Palm Beach County and
  - Volusia County improved from a C to a B.

|             |        | 199 | 9-2001 |          |       | 1998-20  | 00    | 1997-1   | 999   | 1996-1   | 998   |
|-------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County      | Orange | Red | Purple | Wgt. Avg | Grade |
| Miami-Dade  | 6      | 0   | 0      | 2.0      | С     | 4.3      | F     | 5.3      | F     | *        | *     |
| Orange      | 6      | 0   | 0      | 2.0      | С     | 5.5      | F     | 5.8      | F     | 5.2      | F     |
| Osceola     | 2      | 0   | 0      | 0.7      | В     | 3.0      | D     | 3.3      | F     | 3.3      | F     |
| Palm Beach  | 2      | 0   | 0      | 0.7      | В     | 1.0      | С     | 1.0      | С     | 0.7      | В     |
| Pasco       | 6      | 0   | 0      | 2.0      | С     | 3.3      | F     | 2.7      | D     | 1.7      | С     |
| Pinellas    | 11     | 0   | 0      | 3.7      | F     | 5.5      | F     | 4.2      | F     | 2.5      | D     |
| Polk        | 5      | 0   | 0      | 1.7      | С     | 3.8      | F     | 4.5      | F     | 4.2      | F     |
| Saint Johns | *      | *   | *      | *        | *     | *        | *     | *        | *     | 0.3      | В     |
| St. Lucie   | 2      | 0   | 0      | 0.7      | В     | 0.3      | В     | 0.3      | В     | 0.3      | В     |
| Santa Rosa  | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Sarasota    | 12     | 1   | 0      | 4.5      | F     | 5.2      | F     | 4.2      | F     | 3.2      | D     |
| Seminole    | 3      | 0   | 0      | 1.0      | С     | 2.3      | D     | 2.0      | С     | 1.7      | С     |
| Volusia     | 1      | 0   | 0      | 0.3      | В     | 1.3      | С     | 1.0      | С     | 1.0      | С     |
| Wakulla     | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

- (7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.
- (8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).
- (9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

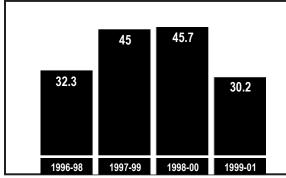


#### American Lung Association of Georgia

2452 Spring Road Smyrna, GA 30080-3862 (770) 434-5864 www.lungusa.org/georgia

|          |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County   | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Bibb     | 153,887   | 34,494          | 19,620         | 2,261               | 8,131           | 5,266                 | 1,810     |  |  |  |  |  |  |
| Chatham  | 232,048   | 48,736          | 29,770         | 3,212               | 12,516          | 8,062                 | 2,738     |  |  |  |  |  |  |
| Cherokee | 141,903   | 34,430          | 9,353          | 2,218               | 7,341           | 4,515                 | 1,224     |  |  |  |  |  |  |
| Cobb     | 607,751   | 133,091         | 42,036         | 8,760               | 32,399          | 19,843                | 5,349     |  |  |  |  |  |  |
| Coweta   | 89,215    | 21,853          | 7,571          | 1,418               | 4,582           | 2,874                 | 855       |  |  |  |  |  |  |
| Dawson   | 15,999    | 3,423           | 1,491          | 222                 | 864             | 552                   | 171       |  |  |  |  |  |  |
| DeKalb   | 665,865   | 138,468         | 53,224         | 9,068               | 36,161          | 22,064                | 6,054     |  |  |  |  |  |  |
| Douglas  | 92,174    | 21,249          | 6,958          | 1,407               | 4,812           | 2,994                 | 852       |  |  |  |  |  |  |
| Fannin   | 19,798    | 3,406           | 3,766          | 229                 | 1,125           | 779                   | 319       |  |  |  |  |  |  |
| Fayette  | 91,263    | 21,388          | 8,104          | 1,468               | 4,668           | 3,048                 | 983       |  |  |  |  |  |  |
| Fulton   | 816,006   | 169,066         | 68,990         | 11,021              | 44,434          | 27,362                | 7,741     |  |  |  |  |  |  |
| Glynn    | 67,568    | 14,021          | 9,761          | 946                 | 3,630           | 2,413                 | 886       |  |  |  |  |  |  |
| Gwinnett | 588,448   | 139,952         | 31,599         | 9,179               | 30,473          | 18,361                | 4,577     |  |  |  |  |  |  |
| Henry    | 119,341   | 29,621          | 8,824          | 1,928               | 6,090           | 3,769                 | 1,061     |  |  |  |  |  |  |
| Murray   | 36,506    | 8,629           | 2,922          | 564                 | 1,896           | 1,179                 | 340       |  |  |  |  |  |  |
| Muscogee | 186,291   | 41,558          | 21,817         | 2,765               | 9,806           | 6,229                 | 2,034     |  |  |  |  |  |  |
| Paulding | 81,678    | 21,777          | 4,824          | 1,387               | 4,080           | 2,441                 | 613       |  |  |  |  |  |  |
| Richmond | 199,775   | 44,739          | 21,645         | 2,965               | 10,522          | 6,659                 | 2,117     |  |  |  |  |  |  |
| Rockdale | 70,111    | 15,762          | 6,456          | 1,067               | 3,663           | 2,335                 | 725       |  |  |  |  |  |  |
| Sumter   | 33,200    | 7,773           | 4,095          | 511                 | 1,724           | 1,110                 | 377       |  |  |  |  |  |  |
| TOTAL    | 4,308,827 | 953,436         | 362,826        | 62,594              | 228,917         | 141,856               | 40,827    |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### GEORGIA

#### Fulton County Air Quality Trends



Each bar marks the Weighted Averages for Fulton County for each period.

#### **Changes for 2003 Report**

- Four counties received grades in this report after not having sufficient monitoring data to be graded in 2002:
  - -Cherokee County received a C.
  - -Cobb County, Coweta County and Henry County all received an F.
- Glynn County's grade improved from a C to a B.

|          |        | 199 | 9-2001 |          |       | 1998-20  | 00    | 1997-1   | 1999  | 1996-1   | 998   |
|----------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County   | Orange | Red | Purple | Wgt. Avg | Grade |
| Bibb     | 32     | 7   | 1      | 14.8     | F     | 19.7     | F     | 17.5     | F     | *        | *     |
| Chatham  | 4      | 0   | 0      | 1.3      | С     | 1.3      | С     | 1.0      | С     | 0.0      | А     |
| Cherokee | 4      | 0   | 0      | 1.3      | С     | *        | *     | *        | *     | *        | *     |
| Cobb     | 25     | 5   | 0      | 10.8     | F     | *        | *     | *        | *     | *        | *     |
| Coweta   | 41     | 7   | 0      | 17.2     | F     | *        | *     | *        | *     | *        | *     |
| Dawson   | 14     | 0   | 0      | 4.7      | F     | 8.0      | F     | *        | *     | *        | *     |
| DeKalb   | 47     | 12  | 3      | 23.7     | F     | 31.5     | F     | 26.7     | F     | 20.2     | F     |
| Douglas  | 51     | 5   | 0      | 19.5     | F     | 31.3     | F     | 29.5     | F     | *        | *     |
| Fannin   | *      | *   | *      | *        | *     | *        | *     | 1.7      | С     | 1.3      | С     |
| Fayette  | 31     | 9   | 2      | 16.2     | F     | 27.8     | F     | *        | *     | *        | *     |
| Fulton   | 60     | 15  | 4      | 30.2     | F     | 45.7     | F     | 45.0     | F     | 32.3     | F     |
| Glynn    | 2      | 0   | 0      | 0.7      | В     | 1.0      | С     | 1.3      | С     | 1.0      | С     |
| Gwinnett | 23     | 6   | 1      | 11.3     | F     | 20.5     | F     | 18.0     | F     | 15.2     | F     |
| Henry    | 44     | 11  | 5      | 23.5     | F     | *        | *     | *        | *     | *        | *     |
| Murray   | *      | *   | *      | *        | *     | *        | *     | *        | *     | 4.0      | F     |
| Muscogee | 20     | 1   | 0      | 7.2      | F     | 9.8      | F     | 8.0      | F     | 13.8     | F     |
| Paulding | 30     | 3   | 0      | 11.5     | F     | 19.3     | F     | 19.0     | F     | 7.3      | F     |
| Richmond | 17     | 2   | 0      | 6.7      | F     | 10.0     | F     | 9.3      | F     | 29.3     | F     |
| Rockdale | 42     | 15  | 3      | 23.5     | F     | 35.7     | F     | 41.5     | F     | *        | *     |
| Sumter   | 11     | 0   | 0      | 3.7      | F     | 3.3      | F     | *        | *     | *        | *     |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

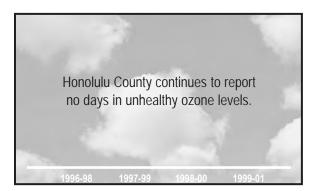


#### American Lung Association of Hawaii

245 North Kukui Street, Suite 100 Honolulu, HI 96817 (808) 537-5966 www.ala-hawaii.org

| Total Pop | 14 and<br>Under    | 65 and<br>Over                                                                                       | Pediatric<br>Asthma                                                                                                                                        | Adult<br>Asthma                                                                                                                                                                                                     | Chronic<br>Bronchitis                                                                                                                                                                                        | Emphysema                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 148,677   | 31,731             | 20,119                                                                                               | 2,149                                                                                                                                                      | 8,079                                                                                                                                                                                                               | 5,271                                                                                                                                                                                                        | 1,915                                                                                                                                                                                                                                                                                                                               |
| 876,156   | 174,848            | 117,737                                                                                              | 11,544                                                                                                                                                     | 49,104                                                                                                                                                                                                              | 31,080                                                                                                                                                                                                       | 10,722                                                                                                                                                                                                                                                                                                                              |
| 1,024,833 | 206,579            | 137,856                                                                                              | 13,693                                                                                                                                                     | 57,183                                                                                                                                                                                                              | 36,351                                                                                                                                                                                                       | 12,637                                                                                                                                                                                                                                                                                                                              |
|           | 148,677<br>876,156 | Total Pop         14 and<br>Under           148,677         31,731           876,156         174,848 | Total Pop         14 and<br>Under         65 and<br>Over           148,677         31,731         20,119           876,156         174,848         117,737 | Total Pop         14 and<br>Under         65 and<br>Over         Pediatric<br>Asthma           148,677         31,731         20,119         2,149           876,156         174,848         117,737         11,544 | Under         Over         Asthma         Asthma           148,677         31,731         20,119         2,149         8,079           876,156         174,848         117,737         11,544         49,104 | Total Pop         14 and<br>Under         65 and<br>Over         Pediatric<br>Asthma         Adult<br>Asthma         Chronic<br>Bronchitis           148,677         31,731         20,119         2,149         8,079         5,271           876,156         174,848         117,737         11,544         49,104         31,080 |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### HAWAII

#### Honolulu County Air Quality Trends



#### **Changes for 2003 Report**

- There were no changes from the 2002 report.
- Honolulu County continues to report no days in unhealthy ozone ranges.
- Insufficient monitoring data are available from Hawaii County's monitors to grade it.

|          |        | High Ozone Days |        |          |       |          |       |                    |       |          |       |  |
|----------|--------|-----------------|--------|----------|-------|----------|-------|--------------------|-------|----------|-------|--|
|          |        | 199             | 9-2001 |          |       | 1998-20  | 000   | 1997- <sup>-</sup> |       | 1996-1   |       |  |
| County   | Orange | Red             | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade | Wgt. Avg | Grade |  |
| Hawaii   | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *        | *     |  |
| Honolulu | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | 0.0                | А     | 0.0      | А     |  |
|          |        |                 |        |          |       |          |       |                    |       |          |       |  |
|          |        |                 |        |          |       |          |       |                    |       |          |       |  |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(7)</sup> Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.



#### American Lung Association of Idaho/Nevada

P.O. Box 7056 Reno, NV 89510 (775) 829-5864 www.lungusa.org/idaho\_nevada

|        | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|--------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Ada    | 300,904        | 68,466          | 27,301         | 4,538               | 17,482          | 9,848                 | 2,936     |  |  |  |  |  |
| Butte  | 2,899          | 687             | 433            | 47                  | 164             | 101                   | 39        |  |  |  |  |  |
| Elmore | 29,130         | 6,879           | 2,079          | 450                 | 1,690           | 896                   | 227       |  |  |  |  |  |
| TOTAL  | 332,933        | 76,032          | 29,813         | 5,034               | 19,336          | 10,845                | 3,202     |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Butte County Air Quality Trends



#### **Changes for 2003 Report**

Monitoring data are now available for Ada County and Elmore County, though not enough to grade.

|        |        | High Ozone Days |                  |          |       |                     |   |                   |   |                    |   |  |
|--------|--------|-----------------|------------------|----------|-------|---------------------|---|-------------------|---|--------------------|---|--|
| County | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |  |
| Ada    | *      | *               | *                | *        | *     | *                   | * | *                 | * | *                  | * |  |
| Butte  | 0      | 0               | 0                | 0.0      | А     | 0.0                 | А | 0.0               | А | 0.0                | А |  |
| Elmore | *      | *               | *                | *        | *     | *                   | * | *                 | * | *                  | * |  |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



#### American Lung Association of Metropolitan Chicago

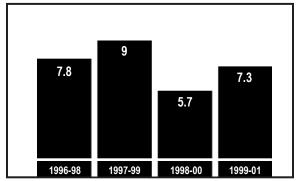
1440 West Washington Blvd.Chicago, IL 60607-1878(312) 243-2000www.lungchicago.org

#### American Lung Association of Illinois-Iowa

3000 Kelly Lane Springfield, IL 62707 (217) 787-5864 www.lungilia.org

|             |            | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-------------|------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County      | Total Pop  | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Adams       | 68,277     | 13,937          | 12,025         | 940                 | 3,962           | 2,484                 | 981       |  |  |  |  |  |  |
| Champaign   | 179,669    | 31,574          | 17,470         | 2,091               | 11,598          | 6,213                 | 1,755     |  |  |  |  |  |  |
| Clark       | 17,008     | 3,466           | 3,061          | 234                 | 983             | 623                   | 250       |  |  |  |  |  |  |
| Cook        | 5,376,741  | 1,175,298       | 630,265        | 77,299              | 317,906         | 182,421               | 59,663    |  |  |  |  |  |  |
| DuPage      | 904,161    | 202,542         | 88,794         | 13,373              | 53,105          | 30,305                | 9,464     |  |  |  |  |  |  |
| Effingham   | 34,264     | 8,051           | 4,767          | 541                 | 1,922           | 1,156                 | 419       |  |  |  |  |  |  |
| Hamilton    | 8,621      | 1,663           | 1,655          | 114                 | 501             | 324                   | 134       |  |  |  |  |  |  |
| Jersey      | 21,668     | 4,403           | 3,114          | 305                 | 1,268           | 765                   | 277       |  |  |  |  |  |  |
| Kane        | 404,119    | 102,856         | 33,981         | 6,763               | 22,794          | 12,679                | 3,748     |  |  |  |  |  |  |
| Lake        | 644,356    | 160,624         | 54,989         | 10,472              | 36,705          | 20,593                | 6,157     |  |  |  |  |  |  |
| McHenry     | 260,077    | 66,359          | 20,913         | 4,341               | 14,683          | 8,184                 | 2,402     |  |  |  |  |  |  |
| McLean      | 150,433    | 29,636          | 14,621         | 1,952               | 9,365           | 5,103                 | 1,486     |  |  |  |  |  |  |
| Macon       | 114,706    | 23,388          | 17,481         | 1,558               | 6,747           | 4,144                 | 1,543     |  |  |  |  |  |  |
| Macoupin    | 49,019     | 9,697           | 8,576          | 667                 | 2,855           | 1,792                 | 706       |  |  |  |  |  |  |
| Madison     | 258,941    | 53,017          | 36,923         | 3,563               | 15,291          | 9,175                 | 3,291     |  |  |  |  |  |  |
| Peoria      | 183,433    | 38,457          | 25,981         | 2,550               | 10,790          | 6,486                 | 2,328     |  |  |  |  |  |  |
| Randolph    | 33,893     | 6,086           | 5,292          | 415                 | 2,071           | 1,246                 | 455       |  |  |  |  |  |  |
| Rock Island | 149,374    | 29,244          | 22,564         | 1,964               | 8,899           | 5,427                 | 1,998     |  |  |  |  |  |  |
| St. Clair   | 256,082    | 58,592          | 33,709         | 3,922               | 14,625          | 8,660                 | 3,033     |  |  |  |  |  |  |
| Sangamon    | 188,951    | 38,883          | 25,524         | 2,607               | 11,157          | 6,694                 | 2,367     |  |  |  |  |  |  |
| Will        | 502,266    | 127,572         | 41,610         | 8,334               | 28,443          | 15,812                | 4,652     |  |  |  |  |  |  |
| Winnebago   | 278,418    | 61,537          | 35,450         | 4,066               | 16,190          | 9,596                 | 3,319     |  |  |  |  |  |  |
| TOTAL       | 10,084,477 | 2,246,882       | 1,138,765      | 148,073             | 591,858         | 339,882               | 110,424   |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### ILLINOIS

#### Cook County Air Quality Trends



Each bar marks the Weighted Averages for Cook County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for McLean County, though not enough to grade.
- Adams County's grade improved from a C to a B.
- The grades for Champaign County, Effingham County and St. Clair County improved from a D to a C.
- DuPage County's grade improved from a B to an A.
- Cook County replaced Madison County as having the worst record of high ozone days.

### High Ozone Days

| County      | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-1<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg | 998<br>Grade |
|-------------|--------|------------|------------------|----------|-------|---------------------|---|--------------------|---|--------------------|--------------|
| Adams       | 2      | 0          | 0                | 0.7      | В     | 1.0                 | С | 1.0                | С | 1.7                | С            |
| Champaign   | 6      | 0          | 0                | 2.0      | С     | 2.7                 | D | 2.7                | D | 2.7                | D            |
| Clark       | *      | *          | *                | *        | *     | *                   | * | *                  | * | *                  | *            |
| Cook        | 22     | 0          | 0                | 7.3      | F     | 5.7                 | F | 9.0                | F | 7.8                | F            |
| DuPage      | 0      | 0          | 0                | 0.0      | А     | 0.3                 | В | 0.3                | В | 0.3                | В            |
| Effingham   | 6      | 0          | 0                | 2.0      | С     | 2.3                 | D | 3.0                | D | 1.7                | С            |
| Hamilton    | 5      | 0          | 0                | 1.7      | С     | 2.0                 | С | 1.3                | С | *                  | *            |
| Jersey      | 16     | 0          | 0                | 5.3      | F     | 6.3                 | F | 6.7                | F | 3.7                | F            |
| Kane        | 2      | 0          | 0                | 0.7      | В     | 0.3                 | В | 0.3                | В | 0.0                | А            |
| Lake        | 11     | 0          | 0                | 3.7      | F     | 4.5                 | F | 6.3                | F | 5.0                | F            |
| McHenry     | 9      | 0          | 0                | 3.0      | D     | 2.3                 | D | 3.3                | F | 2.3                | D            |
| McLean      | *      | *          | *                | *        | *     | *                   | * | *                  | * | *                  | *            |
| Macon       | 5      | 0          | 0                | 1.7      | С     | 1.7                 | С | 1.7                | С | 1.7                | С            |
| Macoupin    | 8      | 0          | 0                | 2.7      | D     | 2.7                 | D | 2.0                | С | 2.7                | D            |
| Madison     | 16     | 1          | 0                | 5.8      | F     | 6.8                 | F | 8.7                | F | 9.2                | F            |
| Peoria      | 3      | 0          | 0                | 1.0      | С     | 1.3                 | С | 1.3                | С | 0.3                | В            |
| Randolph    | 3      | 0          | 0                | 1.0      | С     | 1.3                 | С | 1.0                | С | 0.7                | В            |
| Rock Island | 0      | 0          | 0                | 0.0      | А     | 0.0                 | Α | 0.0                | А | 0.0                | Α            |
| St. Clair   | 6      | 0          | 0                | 2.0      | С     | 2.3                 | D | 2.0                | С | 1.0                | С            |
| Sangamon    | 4      | 0          | 0                | 1.3      | С     | 1.0                 | С | 0.7                | В | 0.7                | В            |
| Will        | 7      | 0          | 0                | 2.3      | D     | 2.7                 | D | 2.7                | D | 1.3                | С            |
| Winnebago   | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В | 0.3                | В | 0.3                | В            |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

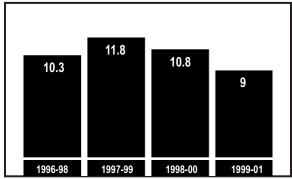


#### American Lung Association of Indiana

9445 Delegates Row Indianapolis, IN 46240-1470 (317) 573-3900 www.lungin.org

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Allen      | 331,849   | 77,122          | 37,760         | 5,085               | 18,206          | 11,078                | 3,658     |  |  |  |  |  |  |
| Boone      | 46,107    | 10,890          | 5,450          | 722                 | 2,516           | 1,552                 | 532       |  |  |  |  |  |  |
| Carroll    | 20,165    | 4,403           | 2,806          | 293                 | 1,134           | 707                   | 256       |  |  |  |  |  |  |
| Clark      | 96,472    | 19,490          | 11,877         | 1,293               | 5,557           | 3,411                 | 1,154     |  |  |  |  |  |  |
| Delaware   | 118,769   | 21,689          | 15,989         | 1,452               | 7,022           | 4,283                 | 1,456     |  |  |  |  |  |  |
| Elkhart    | 182,791   | 44,538          | 19,841         | 2,920               | 9,858           | 5,976                 | 1,943     |  |  |  |  |  |  |
| Floyd      | 70,823    | 15,138          | 8,736          | 1,011               | 3,996           | 2,460                 | 842       |  |  |  |  |  |  |
| Gibson     | 32,500    | 6,571           | 5,046          | 446                 | 1,865           | 1,168                 | 437       |  |  |  |  |  |  |
| Greene     | 33,157    | 6,753           | 5,060          | 453                 | 1,905           | 1,196                 | 446       |  |  |  |  |  |  |
| Hamilton   | 182,740   | 48,289          | 13,659         | 3,111               | 9,561           | 5,679                 | 1,631     |  |  |  |  |  |  |
| Hancock    | 55,391    | 12,116          | 6,226          | 813                 | 3,099           | 1,913                 | 644       |  |  |  |  |  |  |
| Hendricks  | 104,093   | 24,204          | 10,138         | 1,613               | 5,684           | 3,442                 | 1,085     |  |  |  |  |  |  |
| Huntington | 38,075    | 8,185           | 5,357          | 550                 | 2,141           | 1,325                 | 474       |  |  |  |  |  |  |
| Jackson    | 41,335    | 8,766           | 5,503          | 583                 | 2,341           | 1,440                 | 502       |  |  |  |  |  |  |
| Johnson    | 115,209   | 26,131          | 12,638         | 1,733               | 6,366           | 3,871                 | 1,262     |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### INDIANA

### Hancock County Air Quality Trends



Each bar marks the Weighted Averages for Hancock County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Carroll County and Delaware County,
- Gibson County has sufficient monitoring data now to receive a grade of B after having no grade in the 2002 report.
- Elkhart County's grade has improved from a B to an A.
- Vigo County's grade improved from a D to a C.
- Hancock County and Lake County replace Clark County as having the worst record of high ozone days in the state.

|            |        | High Ozone Days |        |          |       |          |       |          |       |                    |       |  |
|------------|--------|-----------------|--------|----------|-------|----------|-------|----------|-------|--------------------|-------|--|
|            |        |                 | 9-2001 |          |       | 1998-20  |       | 1997-1   |       | 1996- <sup>-</sup> |       |  |
| County     | Orange | Red             | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade |  |
| Allen      | 18     | 0               | 0      | 6.0      | F     | 8.0      | F     | 9.0      | F     | 8.3                | F     |  |
| Boone      | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Carroll    | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Clark      | 19     | 0               | 0      | 6.3      | F     | 13.0     | F     | 14.8     | F     | 11.8               | F     |  |
| Delaware   | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Elkhart    | 0      | 0               | 0      | 0.0      | А     | 0.7      | В     | 2.3      | D     | 5.0                | F     |  |
| Floyd      | 9      | 1               | 0      | 3.5      | F     | 8.5      | F     | 9.8      | F     | 12.0               | F     |  |
| Gibson     | 2      | 0               | 0      | 0.7      | В     | *        | *     | *        | *     | *                  | *     |  |
| Greene     | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Hamilton   | 26     | 0               | 0      | 8.7      | F     | 12.8     | F     | 14.3     | F     | 11.8               | F     |  |
| Hancock    | 27     | 0               | 0      | 9.0      | F     | 10.8     | F     | 11.8     | F     | 10.3               | F     |  |
| Hendricks  | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Huntington | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Jackson    | *      | *               | *      | *        | *     | *        | *     | *        | *     | *                  | *     |  |
| Johnson    | 15     | 0               | 0      | 5.0      | F     | 8.3      | F     | 8.0      | F     | *                  | *     |  |
|            |        |                 |        |          |       |          |       |          |       |                    |       |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

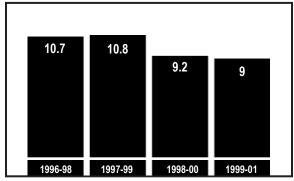


#### American Lung Association of Indiana

9445 Delegates Row Indianapolis, IN 46240-1470 (317) 573-3900 www.lungin.org

|             |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County      | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Lake        | 484,564   | 107,338         | 63,234         | 7,178               | 26,998          | 16,676                | 5,846     |  |  |  |  |  |  |
| LaPorte     | 110,106   | 22,263          | 14,912         | 1,493               | 6,327           | 3,916                 | 1,380     |  |  |  |  |  |  |
| Madison     | 133,358   | 26,454          | 19,898         | 1,757               | 7,746           | 4,836                 | 1,771     |  |  |  |  |  |  |
| Marion      | 860,454   | 187,144         | 95,534         | 12,263              | 48,339          | 29,032                | 9,222     |  |  |  |  |  |  |
| Morgan      | 66,689    | 15,035          | 7,100          | 1,004               | 3,688           | 2,254                 | 737       |  |  |  |  |  |  |
| Perry       | 18,899    | 3,475           | 2,818          | 239                 | 1,110           | 690                   | 250       |  |  |  |  |  |  |
| Porter      | 146,798   | 30,792          | 15,972         | 2,090               | 8,286           | 5,072                 | 1,663     |  |  |  |  |  |  |
| Posey       | 27,061    | 6,086           | 3,363          | 409                 | 1,498           | 928                   | 324       |  |  |  |  |  |  |
| St. Joseph  | 265,559   | 57,046          | 36,101         | 3,776               | 14,986          | 9,192                 | 3,207     |  |  |  |  |  |  |
| Shelby      | 43,445    | 9,552           | 5,279          | 641                 | 2,422           | 1,485                 | 504       |  |  |  |  |  |  |
| Vanderburgh | 171,922   | 33,005          | 26,328         | 2,200               | 10,057          | 6,233                 | 2,267     |  |  |  |  |  |  |
| Vigo        | 105,848   | 20,024          | 15,048         | 1,339               | 6,200           | 3,800                 | 1,327     |  |  |  |  |  |  |
| Warrick     | 52,383    | 11,546          | 5,665          | 778                 | 2,916           | 1,796                 | 598       |  |  |  |  |  |  |
| TOTAL       | 3,956,562 | 864,045         | 477,338        | 57,245              | 221,821         | 135,411               | 45,417    |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### 

#### Lake County Air Quality Trends



Each bar marks the Weighted Averages for Lake County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Carroll County and Delaware County,
- Gibson County has sufficient monitoring data now to receive a grade of B after having no grade in the 2002 report.
- Elkhart County's grade has improved from a B to an A.
- Vigo County's grade improved from a D to a C.
- Hancock County and Lake County replace Clark County as having the worst record of high ozone days in the state.

|             |        | High Ozone Days |                  |          |       |                     |   |                   |   |                   |   |  |
|-------------|--------|-----------------|------------------|----------|-------|---------------------|---|-------------------|---|-------------------|---|--|
| County      | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |  |
| Lake        | 27     | 0               | 0                | 9.0      | F     | 9.2                 | F | 10.8              | F | 10.7              | F |  |
| LaPorte     | 18     | 1               | 0                | 6.5      | F     | 8.3                 | F | 11.3              | F | 12.3              | F |  |
| Madison     | 20     | 0               | 0                | 6.7      | F     | 10.0                | F | 10.7              | F | *                 | * |  |
| Marion      | 22     | 0               | 0                | 7.3      | F     | 10.0                | F | 12.5              | F | 10.5              | F |  |
| Morgan      | 18     | 0               | 0                | 6.0      | F     | 8.7                 | F | 9.3               | F | 12.2              | F |  |
| Perry       | 23     | 0               | 0                | 7.7      | F     | 11.5                | F | *                 | * | *                 | * |  |
| Porter      | 18     | 2               | 0                | 7.0      | F     | 9.5                 | F | 11.5              | F | *                 | * |  |
| Posey       | 19     | 1               | 0                | 6.8      | F     | 10.7                | F | 10.3              | F | 9.8               | F |  |
| St. Joseph  | 19     | 0               | 0                | 6.3      | F     | 7.3                 | F | 8.8               | F | 5.2               | F |  |
| Shelby      | *      | *               | *                | *        | *     | *                   | * | *                 | * | 8.8               | F |  |
| Vanderburgh | n 19   | 0               | 0                | 6.3      | F     | 9.8                 | F | 13.3              | F | 11.7              | F |  |
| Vigo        | 6      | 0               | 0                | 2.0      | С     | 2.3                 | D | 3.0               | D | 8.8               | F |  |
| Warrick     | 13     | 0               | 0                | 4.3      | F     | 9.3                 | F | 14.2              | F | *                 | * |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of Illinois/Iowa

Iowa Division 5601 Douglas Ave. Des Moines, IA 50310 (515) 278-5864 www.lungilia.org

| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Bremer    | 23,325    | 4,496           | 3,733          | 311                 | 1,190           | 851                   | 323       |
| Clinton   | 50,149    | 10,506          | 7,934          | 710                 | 2,510           | 1,795                 | 683       |
| Harrison  | 15,666    | 3,349           | 2,766          | 227                 | 775             | 563                   | 225       |
| Linn      | 191,701   | 40,590          | 23,465         | 2,678               | 9,848           | 6,638                 | 2,227     |
| Palo Alto | 10,147    | 1,905           | 2,163          | 135                 | 513             | 382                   | 164       |
| Polk      | 374,601   | 81,110          | 41,752         | 5,325               | 19,251          | 12,748                | 4,103     |
| Scott     | 158,668   | 34,674          | 18,677         | 2,323               | 7,972           | 5,432                 | 1,824     |
| Story     | 79,981    | 12,527          | 7,870          | 843                 | 4,647           | 2,814                 | 780       |
| Van Buren | 7,809     | 1,579           | 1,491          | 107                 | 388             | 292                   | 121       |
| Warren    | 40,671    | 9,024           | 4,815          | 607                 | 2,023           | 1,387                 | 470       |
| TOTAL     | 952,718   | 199,760         | 114,666        | 13,268              | 49,118          | 32,902                | 10,920    |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# 1.7 1.3 1.996-98 1997-99 1998-00 1999-01

**Scott County Air Quality Trends** 

Each bar marks the Weighted Averages for Scott County for each period.

#### **Changes for 2003 Report**

- Harrison County's grade improved from a B to an A.
- Clinton County now has sufficient monitoring data to receive a grade of C and ties Scott County as having the worst record high ozone days in the state.

|           |        |            | H                | ligh     | Oz    | one                 | Day | ys                 |   |                    |   |
|-----------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------|---|
| County    | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-⁄<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |
| Bremer    | *      | *          | *                | *        | *     | *                   | *   | *                  | * | *                  | * |
| Clinton   | 4      | 0          | 0                | 1.3      | С     | *                   | *   | *                  | * | *                  | * |
| Harrison  | 0      | 0          | 0                | 0.0      | А     | 0.3                 | В   | 0.3                | В | *                  | * |
| Linn      | 3      | 0          | 0                | 1.0      | С     | 1.0                 | С   | 0.7                | В | 0.0                | А |
| Palo Alto | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | *                  | * |
| Polk      | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | 0.0                | А |
| Scott     | 4      | 0          | 0                | 1.3      | С     | 1.7                 | С   | 1.3                | С | 1.0                | С |
| Story     | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | *                  | * |
| Van Buren | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В   | 0.3                | В | 0.0                | А |
| Warren    | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В   | 0.0                | A | *                  | * |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

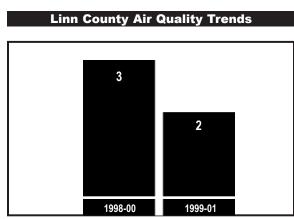
(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



American Lung Association of Kansas 4300 SW Drury Lane Topeka, KS 66604-2419 (785) 272-9290 www.kslung.org


|           | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|-----------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County    | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Linn      | 9,570          | 1,942           | 1,750          | 133                 | 580             | 356                   | 146       |  |  |  |  |  |
| Sedgwick  | 452,869        | 107,065         | 51,574         | 7,053               | 26,762          | 14,964                | 4,920     |  |  |  |  |  |
| Sumner    | 25,946         | 5,980           | 4,014          | 409                 | 1,509           | 894                   | 343       |  |  |  |  |  |
| Trego     | 3,319          | 572             | 796            | 44                  | 203             | 129                   | 59        |  |  |  |  |  |
| Wyandotte | 157,882        | 37,709          | 18,520         | 2,486               | 9,294           | 5,192                 | 1,722     |  |  |  |  |  |
| TOTAL     | 649,586        | 153,268         | 76,654         | 10,124              | 38,348          | 21,535                | 7,190     |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).



Each bar marks the Weighted Averages for Linn County for each period.

#### **Changes for 2003 Report**

KANSAS

- Linn County's grade has improved from a D to a C.
- Wyandotte County's grade has improved from an F to a C.
- Sumner County now has sufficient data to receive a grade of C after having no grade in the 2002 report.
- Linn County, Sedgwick County, and Sumner County replace Wyandotte as the worst record of high ozone days in the state.

|           |       | High Ozone Days |            |                  |          |       |                     |   |                   |   |                    |   |
|-----------|-------|-----------------|------------|------------------|----------|-------|---------------------|---|-------------------|---|--------------------|---|
| County    | Oranç | ge              | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |
| Linn      | 6     |                 | 0          | 0                | 2.0      | С     | 3.0                 | D | *                 | * | *                  | * |
| Sedgwick  | 6     |                 | 0          | 0                | 2.0      | С     | 2.0                 | С | 2.7               | D | 2.7                | D |
| Sumner    | 6     |                 | 0          | 0                | 2.0      | С     | *                   | * | *                 | * | *                  | * |
| Trego     | *     |                 | *          | *                | *        | *     | *                   | * | *                 | * | *                  | * |
| Wyandotte | 4     |                 | 0          | 0                | 1.3      | С     | 3.5                 | F | 3.2               | D | 4.5                | F |
|           |       |                 |            |                  |          |       |                     |   |                   |   |                    |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

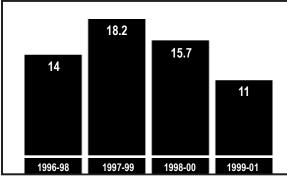
<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.



#### **American Lung Association of Kentucky**

P.O. Box 9067 Louisville, KY 40209-0067 (502) 363-2652 www.kylung.org

|           |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Bell      | 30,060    | 5,993           | 4,129          | 405                 | 1,901           | 1,076                 | 383       |  |  |  |  |  |  |
| Boone     | 85,991    | 20,778          | 6,941          | 1,363               | 5,022           | 2,754                 | 799       |  |  |  |  |  |  |
| Boyd      | 49,752    | 8,788           | 7,758          | 599                 | 3,272           | 1,867                 | 695       |  |  |  |  |  |  |
| Bullitt   | 61,236    | 13,866          | 4,792          | 920                 | 3,663           | 2,019                 | 588       |  |  |  |  |  |  |
| Campbell  | 88,616    | 18,882          | 11,165         | 1,256               | 5,460           | 3,052                 | 1,033     |  |  |  |  |  |  |
| Carter    | 26,889    | 5,446           | 3,374          | 364                 | 1,690           | 950                   | 324       |  |  |  |  |  |  |
| Christian | 72,265    | 17,894          | 7,053          | 1,131               | 4,207           | 2,284                 | 671       |  |  |  |  |  |  |
| Daviess   | 91,545    | 19,344          | 12,643         | 1,306               | 5,675           | 3,209                 | 1,147     |  |  |  |  |  |  |
| Edmonson  | 11,644    | 2,224           | 1,675          | 152                 | 747             | 425                   | 154       |  |  |  |  |  |  |
| Fayette   | 260,512   | 46,804          | 26,174         | 3,071               | 16,739          | 9,156                 | 2,709     |  |  |  |  |  |  |
| Graves    | 37,028    | 7,487           | 5,958          | 501                 | 2,354           | 1,347                 | 513       |  |  |  |  |  |  |
| Greenup   | 36,891    | 7,114           | 5,389          | 481                 | 2,372           | 1,354                 | 498       |  |  |  |  |  |  |
| Hancock   | 8,392     | 1,893           | 921            | 124                 | 512             | 288                   | 96        |  |  |  |  |  |  |
| Hardin    | 94,174    | 21,255          | 9,094          | 1,436               | 5,598           | 3,085                 | 943       |  |  |  |  |  |  |
| Henderson | 44,829    | 9,021           | 5,893          | 611                 | 2,818           | 1,590                 | 555       |  |  |  |  |  |  |
| Jefferson | 693,604   | 140,995         | 93,982         | 9,305               | 43,749          | 24,628                | 8,611     |  |  |  |  |  |  |
| Jessamine | 39,041    | 8,655           | 3,717          | 570                 | 2,359           | 1,299                 | 394       |  |  |  |  |  |  |
| Kenton    | 151,464   | 33,492          | 16,769         | 2,206               | 9,206           | 5,114                 | 1,648     |  |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Jefferson County Air Quality Trends



Each bar marks the Weighted Averages for Jefferson County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Muhlenberg County, though not enough to grade.
- Monitoring data are no longer available from Lawrence County.
- Bell County's grade improved from an F to a D.
- Jessamine County's grade improved from a D to a C.
- Pike County's grade improved from a C to a B.
- Scott County's grade improved from a D to a B.

|           |        | High Ozone Days |                  |          |       |                     |   |                    |   |                   |   |  |
|-----------|--------|-----------------|------------------|----------|-------|---------------------|---|--------------------|---|-------------------|---|--|
| County    | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-⁄<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |  |
| Bell      | 9      | 0               | 0                | 3.0      | D     | 4.0                 | F | 1.7                | С | 1.7               | С |  |
| Boone     | 11     | 0               | 0                | 3.7      | F     | 4.3                 | F | 4.0                | F | 2.3               | D |  |
| Boyd      | 13     | 0               | 0                | 4.3      | F     | 4.0                 | F | 5.2                | F | 2.8               | D |  |
| Bullitt   | 15     | 0               | 0                | 5.0      | F     | 8.7                 | F | 9.5                | F | 7.2               | F |  |
| Campbell  | 19     | 0               | 0                | 6.3      | F     | 7.0                 | F | 6.3                | F | 5.5               | F |  |
| Carter    | 13     | 0               | 0                | 4.3      | F     | 8.3                 | F | *                  | * | *                 | * |  |
| Christian | 13     | 2               | 0                | 5.3      | F     | 7.0                 | F | 7.0                | F | 2.3               | D |  |
| Daviess   | 11     | 0               | 0                | 3.7      | F     | 5.2                 | F | 7.2                | F | 5.2               | F |  |
| Edmonson  | 24     | 1               | 0                | 8.5      | F     | 11.8                | F | 11.8               | F | 6.0               | F |  |
| Fayette   | 13     | 0               | 0                | 4.3      | F     | 5.5                 | F | 6.5                | F | 3.8               | F |  |
| Graves    | 12     | 2               | 0                | 5.0      | F     | 6.7                 | F | 6.7                | F | 2.7               | D |  |
| Greenup   | 17     | 1               | 0                | 6.2      | F     | 9.3                 | F | 9.7                | F | 6.2               | F |  |
| Hancock   | 11     | 0               | 0                | 3.7      | F     | 7.5                 | F | 8.8                | F | 7.2               | F |  |
| Hardin    | 15     | 0               | 0                | 5.0      | F     | 4.7                 | F | 4.0                | F | 1.0               | С |  |
| Henderson | 13     | 0               | 0                | 4.3      | F     | 5.0                 | F | 5.7                | F | 4.7               | F |  |
| Jefferson | 30     | 2               | 0                | 11.0     | F     | 15.7                | F | 18.2               | F | 14.0              | F |  |
| Jessamine | 4      | 0               | 0                | 1.3      | С     | 3.0                 | D | 3.3                | F | 2.7               | D |  |
| Kenton    | 11     | 0               | 0                | 3.7      | F     | 6.5                 | F | 6.2                | F | 6.3               | F |  |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

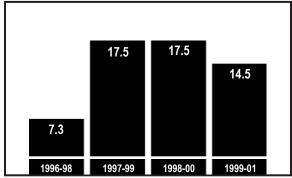
(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of Kentucky

P.O. Box 9067 Louisville, KY 40209-0067 (502) 363-2652 www.kylung.org

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Lawrence   | 15,387    | 3,367           | 1,894          | 261                 | 585             | 830                   | 111       |  |  |  |  |  |  |
| Livingston | 9,804     | 1,803           | 1,463          | 121                 | 642             | 367                   | 136       |  |  |  |  |  |  |
| McCracken  | 65,514    | 12,671          | 10,445         | 847                 | 4,227           | 2,417                 | 914       |  |  |  |  |  |  |
| McLean     | 9,938     | 1,985           | 1,438          | 133                 | 633             | 361                   | 132       |  |  |  |  |  |  |
| Muhlenberg | 31,839    | 5,876           | 4,926          | 398                 | 2,069           | 1,179                 | 438       |  |  |  |  |  |  |
| Oldham     | 46,178    | 10,468          | 3,247          | 699                 | 2,760           | 1,525                 | 439       |  |  |  |  |  |  |
| Perry      | 29,390    | 5,784           | 3,288          | 396                 | 1,845           | 1,033                 | 339       |  |  |  |  |  |  |
| Pike       | 68,736    | 13,262          | 8,448          | 901                 | 4,368           | 2,457                 | 834       |  |  |  |  |  |  |
| Pulaski    | 56,217    | 10,790          | 8,486          | 728                 | 3,618           | 2,062                 | 762       |  |  |  |  |  |  |
| Scott      | 33,061    | 7,355           | 2,936          | 480                 | 1,991           | 1,089                 | 318       |  |  |  |  |  |  |
| Simpson    | 16,405    | 3,622           | 2,153          | 238                 | 1,009           | 569                   | 200       |  |  |  |  |  |  |
| Trigg      | 12,597    | 2,430           | 2,090          | 160                 | 823             | 475                   | 185       |  |  |  |  |  |  |
| Warren     | 92,522    | 17,666          | 9,677          | 1,183               | 5,830           | 3,207                 | 981       |  |  |  |  |  |  |
| TOTAL      | 2,371,521 | 487,010         | 287,918        | 32,348              | 147,745         | 83,066                | 27,546    |  |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### **Oldham County Air Quality Trends**



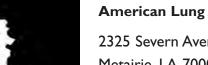
Each bar marks the Weighted Averages for Oldham County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Muhlenberg County, though not enough to grade.
- Monitoring data are no longer available from Lawrence County.
- Bell County's grade improved from an F to a D.
- Jessamine County's grade improved from a D to a C.
- Pike County's grade improved from a C to a B.
- Scott County's grade improved from a D to a B.

|            |        | 1999-2001<br>Irango Bod Burplo Wat Av |        |          |       | 1998-2000 |       |          | 1999  | 1996-1998 |       |  |
|------------|--------|---------------------------------------|--------|----------|-------|-----------|-------|----------|-------|-----------|-------|--|
| County     | Orange | Red                                   | Purple | Wgt. Avg | Grade | Wgt. Avg  | Grade | Wgt. Avg | Grade | Wgt. Avg  | Grade |  |
| Lawrence   | *      | *                                     | *      | *        | *     | *         | *     | *        | *     | 0.7       | В     |  |
| Livingston | 24     | 3                                     | 0      | 9.5      | F     | 13.8      | F     | 16.5     | F     | 10.0      | F     |  |
| McCracken  | 13     | 1                                     | 0      | 4.8      | F     | 6.2       | F     | 6.3      | F     | 3.0       | D     |  |
| McLean     | 16     | 2                                     | 0      | 6.3      | F     | 7.3       | F     | 8.0      | F     | 2.7       | D     |  |
| Muhlenberg | *      | *                                     | *      | *        | *     | *         | *     | *        | *     | *         | *     |  |
| Oldham     | 39     | 3                                     | 0      | 14.5     | F     | 17.5      | F     | 17.5     | F     | 7.3       | F     |  |
| Perry      | 1      | 0                                     | 0      | 0.3      | В     | 0.3       | В     | 0.3      | В     | 0.0       | А     |  |
| Pike       | 2      | 0                                     | 0      | 0.7      | В     | 2.0       | С     | 2.0      | С     | 1.3       | С     |  |
| Pulaski    | 17     | 0                                     | 0      | 5.7      | F     | 6.7       | F     | 5.3      | F     | 1.0       | С     |  |
| Scott      | 2      | 0                                     | 0      | 0.7      | В     | 2.7       | D     | 2.7      | D     | 2.3       | D     |  |
| Simpson    | 23     | 0                                     | 0      | 7.7      | F     | 10.5      | F     | 10.7     | F     | 6.0       | F     |  |
| Trigg      | 11     | 0                                     | 0      | 3.7      | F     | 4.7       | F     | 5.0      | F     | 2.7       | D     |  |
| Warren     | *      | *                                     | *      | *        | *     | *         | *     | *        | *     | *         | *     |  |

### . . .


(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

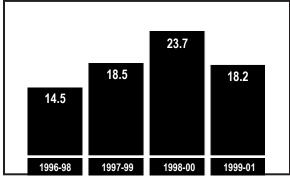


#### American Lung Association of Louisiana

2325 Severn Avenue, Suite 8 Metairie, LA 70001-6918 (504) 828-5864 www.louisianalung.org

|                  |           | At-             | Risk           | Grou                | ps              |                       |           |
|------------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Parish           | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Ascension        | 76,627    | 19,149          | 5,892          | 1,275               | 2,822           | 2,389                 | 680       |
| Beauregard       | 32,986    | 7,473           | 3,925          | 501                 | 1,275           | 1,121                 | 382       |
| Bossier          | 98,310    | 22,870          | 10,259         | 1,523               | 3,754           | 3,239                 | 1,032     |
| Caddo            | 252,161   | 55,392          | 34,444         | 3,733               | 9,873           | 8,693                 | 3,094     |
| Calcasieu        | 183,577   | 41,081          | 21,759         | 2,780               | 7,096           | 6,184                 | 2,076     |
| East Baton Rouge | 412,852   | 89,006          | 40,932         | 5,976               | 16,125          | 13,770                | 4,210     |
| Grant            | 18,698    | 4,377           | 2,375          | 292                 | 716             | 633                   | 223       |
| Iberville        | 33,320    | 7,138           | 3,580          | 483                 | 1,304           | 1,124                 | 358       |
| Jefferson        | 455,466   | 94,694          | 54,315         | 6,374               | 18,107          | 15,835                | 5,311     |
| Lafayette        | 190,503   | 42,980          | 18,122         | 2,882               | 7,316           | 6,229                 | 1,880     |
| Lafourche        | 89,974    | 20,123          | 10,143         | 1,358               | 3,476           | 3,010                 | 984       |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## LOUISIANA

#### East Baton Rouge Parish Air Quality Trends



Each bar marks the Weighted Averages for East Baton Rouge Parish for each period.

- - -

Г

#### **Changes for 2003 Report**

- Orleans Parish's grade has improved from a B to an A.
- St. Bernard Parish's grade has improved from an F to a D.

|              |        | 199 | 9-2001 |          |       | 1998-20  | 000 | 1997- <sup>-</sup> | 1999 | 1996-1   | 998   |
|--------------|--------|-----|--------|----------|-------|----------|-----|--------------------|------|----------|-------|
| Parish       | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg |     | Wgt. Avg           |      | Wgt. Avg | Grade |
| Ascension    | 12     | 1   | 0      | 4.5      | F     | 7.5      | F   | 6.3                | F    | 6.0      | F     |
| Beauregard   | 4      | 0   | 0      | 1.3      | С     | 2.0      | С   | 1.7                | С    | 1.3      | С     |
| Bossier      | 17     | 1   | 0      | 6.2      | F     | 7.8      | F   | 5.3                | F    | 3.3      | F     |
| Caddo        | 11     | 0   | 0      | 3.7      | F     | 6.0      | F   | 5.3                | F    | 3.7      | F     |
| Calcasieu    | 17     | 0   | 0      | 5.7      | F     | 8.7      | F   | 8.2                | F    | 6.2      | F     |
| E. Baton Rou | ige 44 | 7   | 0      | 18.2     | F     | 23.7     | F   | 18.5               | F    | 14.5     | F     |
| Grant        | 4      | 0   | 0      | 1.3      | С     | 1.3      | С   | 0.7                | В    | 0.3      | В     |
| Iberville    | 41     | 2   | 0      | 14.7     | F     | 18.5     | F   | 18.0               | F    | 17.0     | F     |
| Jefferson    | 24     | 0   | 0      | 8.0      | F     | 9.3      | F   | 6.3                | F    | 4.0      | F     |
| Lafayette    | 10     | 2   | 0      | 4.3      | F     | 5.7      | F   | 3.0                | D    | 2.7      | D     |
| Lafourche    | 13     | 0   | 0      | 4.3      | F     | 5.5      | F   | 4.5                | F    | 2.8      | D     |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



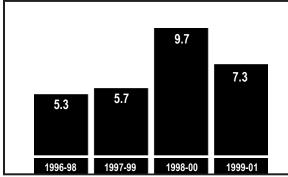
#### American Lung Association of Louisiana

2325 Severn Avenue, Suite 8 Metairie, LA 70001-6918 (504) 828-5864 www.louisianalung.org

|                      |           | At-             | Risk           | Grou                | ps              |                       |           |
|----------------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| ⊾<br>Parish          | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Livingston           | 91,814    | 22,195          | 7,812          | 1,497               | 3,419           | 2,928                 | 874       |
| Orleans              | 484,674   | 107,398         | 56,653         | 7,156               | 18,888          | 16,341                | 5,381     |
| Ouachita             | 147,250   | 33,954          | 17,432         | 2,275               | 5,646           | 4,889                 | 1,628     |
| Pointe Coupee        | 22,763    | 4,991           | 3,160          | 343                 | 886             | 787                   | 286       |
| St. Bernard          | 67,229    | 13,877          | 9,262          | 938                 | 2,687           | 2,365                 | 838       |
| St. Charles          | 48,072    | 11,857          | 4,308          | 806                 | 1,772           | 1,521                 | 464       |
| St. James            | 21,216    | 5,057           | 2,362          | 346                 | 796             | 693                   | 230       |
| St. John the Baptist | 43,044    | 11,029          | 3,356          | 743                 | 1,562           | 1,335                 | 390       |
| St. Mary             | 53,500    | 13,003          | 5,899          | 878                 | 2,001           | 1,747                 | 581       |
| West Baton Rouge     | 21,601    | 4,927           | 2,097          | 335                 | 823             | 709                   | 220       |
| TOTAL                | 2,845,637 | 632,571         | 318,087        | 42,493              | 110,345         | 95,541                | 31,121    |
|                      |           |                 |                |                     |                 |                       |           |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.


(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### PAGE 2 of 2

# UISIAN

#### Livingston Parish Air Quality Trends



Each bar marks the Weighted Averages for Livingston Parish for each period.

#### **Changes for 2003 Report**

- Orleans Parish's grade has improved from a B to an A.
- St. Bernard Parish's grade has improved from an F to a D.

|                  |          |     |        | ligh     | ÖZ    | one      | Day   | ys       |       |          |       |
|------------------|----------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
|                  |          |     | 9-2001 |          |       | 1998-20  |       | 1997-1   |       | 1996-1   |       |
| Parish           | Orange   | Red | Purple | Wgt. Avg | Grade |
| Livingston       | 19       | 2   | 0      | 7.3      | F     | 9.7      | F     | 5.7      | F     | 5.3      | F     |
| Orleans          | 0        | 0   | 0      | 0.0      | А     | 0.3      | В     | 0.3      | В     | 0.3      | В     |
| Ouachita         | 3        | 0   | 0      | 1.0      | С     | 1.0      | С     | 0.3      | В     | 0.0      | А     |
| Pointe Coupee    | e 4      | 1   | 0      | 1.8      | С     | 1.5      | С     | 3.5      | F     | 3.0      | D     |
| St. Bernard      | 7        | 0   | 0      | 2.3      | D     | 4.0      | F     | 2.7      | D     | 3.0      | D     |
| St. Charles      | 11       | 2   | 0      | 4.7      | F     | 5.7      | F     | 3.7      | F     | 2.7      | D     |
| St. James        | 12       | 0   | 0      | 4.0      | F     | 4.7      | F     | 3.7      | F     | 2.3      | D     |
| St. John the Bap | otist 16 | 0   | 0      | 5.3      | F     | 6.3      | F     | 4.3      | F     | 3.2      | D     |
| St. Mary         | 10       | 0   | 0      | 3.3      | F     | 5.8      | F     | 4.8      | F     | 3.3      | F     |
| W. Baton Roug    | ge 16    | 3   | 0      | 6.8      | F     | 7.0      | F     | 4.2      | F     | 4.0      | F     |
|                  |          |     |        |          |       |          |       |          |       |          |       |

#### 

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

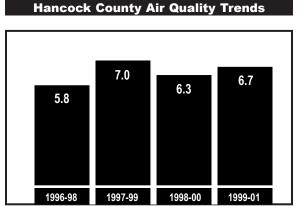
<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



#### American Lung Association of Maine

122 State Street Augusta, ME 04330 (207) 622-6394 www.mainelung.org

| County      | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|-------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Cumberland  | 265,612   | 51,463          | 35,324         | 3,426               | 19,231          | 9,541                 | 3,304     |
| Hancock     | 51,791    | 9,282           | 8,285          | 638                 | 3,756           | 1,953                 | 743       |
| Kennebec    | 117,114   | 22,711          | 16,605         | 1,544               | 8,377           | 4,245                 | 1,532     |
| Knox        | 39,618    | 7,227           | 6,832          | 490                 | 2,863           | 1,506                 | 592       |
| Oxford      | 54,755    | 10,642          | 8,793          | 732                 | 3,877           | 2,015                 | 773       |
| Penobscot   | 144,919   | 26,877          | 18,920         | 1,830               | 10,566          | 5,227                 | 1,792     |
| Piscataquis | 17,235    | 3,169           | 2,995          | 223                 | 1,224           | 652                   | 261       |
| Sagadahoc   | 35,214    | 7,490           | 4,334          | 502                 | 2,461           | 1,233                 | 426       |
| York        | 186,742   | 38,157          | 25,429         | 2,559               | 13,202          | 6,670                 | 2,381     |
| TOTAL       | 913,000   | 177,018         | 127,517        | 11,945              | 65,557          | 33,044                | 11,806    |
|             |           |                 |                |                     |                 |                       |           |


#### Notes

102

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).



Each bar marks the Weighted Averages for Hancock County for each period.

#### **Changes for 2003 Report**

- Cumberland County's grade dropped from a D to an F.
- Knox County's grade dropped from a C to a D.
- Penobscot County's grade dropped from a B to a C.
- Sagadahoc County's data are not sufficient to grade it for this report.

|             |        |     | H      | ligh     | Oz    | one      | Day   | ys       |       |           |       |
|-------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|-----------|-------|
|             |        |     | 9-2001 |          |       | 1998-20  |       | 1997-    |       | 1996-1998 |       |
| County      | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg  | Grade |
| Cumberland  | 9      | 1   | 0      | 3.5      | F     | 2.7      | D     | 5.0      | F     | 5.3       | F     |
| Hancock     | 17     | 2   | 0      | 6.7      | F     | 6.3      | F     | 7.0      | F     | 5.8       | F     |
| Kennebec    | 4      | 0   | 0      | 1.3      | С     | 1.3      | С     | 2.0      | С     | 2.0       | С     |
| Knox        | 6      | 2   | 0      | 3.0      | D     | 1.8      | С     | 4.0      | F     | 3.8       | F     |
| Oxford      | 0      | 0   | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0       | А     |
| Penobscot   | 6      | 0   | 0      | 2.0      | С     | 0.7      | В     | 0.7      | В     | 0.7       | В     |
| Piscataquis | 1      | 0   | 0      | 0.3      | В     | 0.3      | В     | *        | *     | *         | *     |
| Sagadahoc   | *      | *   | *      | *        | *     | 3.5      | F     | 5.8      | F     | 5.7       | F     |
| York        | 15     | 2   | 0      | 6.0      | F     | 5.3      | F     | 7.8      | F     | 6.3       | F     |
|             |        |     |        |          |       |          |       |          |       |           |       |
|             |        |     |        |          |       |          |       |          |       |           |       |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

#### American Lung Association of Maryland

1840 York Road, Suite M Timonium, MD 21093-5156 (410) 560-2120 www.marylandlung.org

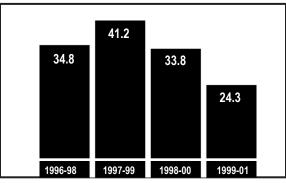
|                 |           | <b>At-Risk Groups</b> |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------------|-----------|-----------------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County          | Total Pop | 14 and<br>Under       | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Anne Arundel    | 489,656   | 103,739               | 48,820         | 6,837               | 26,377          | 16,801                | 5,268     |  |  |  |  |  |  |
| Baltimore       | 754,292   | 148,216               | 110,335        | 9,863               | 40,828          | 27,268                | 9,853     |  |  |  |  |  |  |
| Calvert         | 74,563    | 18,278                | 6,627          | 1,220               | 3,794           | 2,413                 | 748       |  |  |  |  |  |  |
| Carroll         | 150,897   | 34,873                | 16,267         | 2,314               | 7,833           | 5,082                 | 1,678     |  |  |  |  |  |  |
| Cecil           | 85,951    | 19,944                | 8,995          | 1,316               | 4,467           | 2,876                 | 932       |  |  |  |  |  |  |
| Charles         | 120,546   | 28,811                | 9,402          | 1,916               | 6,228           | 3,880                 | 1,131     |  |  |  |  |  |  |
| Frederick       | 195,277   | 45,217                | 18,836         | 2,980               | 10,185          | 6,470                 | 2,018     |  |  |  |  |  |  |
| Harford         | 218,590   | 51,113                | 22,160         | 3,371               | 11,344          | 7,295                 | 2,348     |  |  |  |  |  |  |
| Kent            | 19,197    | 3,285                 | 3,708          | 220                 | 1,064           | 747                   | 303       |  |  |  |  |  |  |
| Montgomery      | 873,341   | 186,678               | 98,157         | 12,263              | 46,756          | 30,294                | 9,993     |  |  |  |  |  |  |
| Prince George's | 801,515   | 181,768               | 61,951         | 11,867              | 42,553          | 26,257                | 7,453     |  |  |  |  |  |  |
| Washington      | 131,923   | 25,745                | 18,690         | 1,710               | 7,170           | 4,752                 | 1,685     |  |  |  |  |  |  |
| Baltimore City  | 651,154   | 135,497               | 85,921         | 8,923               | 34,813          | 22,721                | 7,782     |  |  |  |  |  |  |
| TOTAL           | 4,566,902 | 983,164               | 509,869        | 64,800              | 243,412         | 156,857               | 51,193    |  |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire states' sensitive populations.

(2) City population estimates overlap with county population estimates causing an overestimate of disease. Therefore, city estimates were excluded from total.

(3) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.


(4) **Pediatric asthma** estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 1999 based on national rates (NHIS) applied to county population estimates (US Census).

(5) Adult asthma estimates are for those 18 years and older and represents the estimated number of people who had asthma during 2000 based on state rates (BRFSS) applied to county population estimates (US Census).

(6) Chronic bronchitis estimates are for adults 18 and over who had been diagnosed with this disease within 1999 based on national rates (NHIS) applied to county

## MARYLAND

#### Anne Arundel County Air Quality Trends



Each bar marks the Weighted Averages for Anne Arundel County for each period.

Г

#### **Changes for 2003 Report**

 Washington County now has sufficient data to score an F after having no grade in the 2002 report.

|        |                                                                    | H                                                                                                                                                                                                                                                                                                                    | ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Day                                                                                                                                                                                                               | ys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 199                                                                | 9-2001                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1998-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                | 1997-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>1996-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Orange | Red                                                                | Purple                                                                                                                                                                                                                                                                                                               | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grade                                                                                                                                                                                                             | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58     | 10                                                                 | 0                                                                                                                                                                                                                                                                                                                    | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 41.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26     | 10                                                                 | 0                                                                                                                                                                                                                                                                                                                    | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20     | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                 | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29     | 2                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44     | 8                                                                  | 2                                                                                                                                                                                                                                                                                                                    | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 39     | 6                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36     | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 42     | 12                                                                 | 2                                                                                                                                                                                                                                                                                                                    | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33     | 8                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27     | 2                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e's 45 | 6                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                 | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18     | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                    | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| / *    | *                                                                  | *                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 26<br>20<br>29<br>44<br>39<br>36<br>42<br>33<br>27<br>2's 45<br>18 | Orange         Red           58         10           26         10           20         0           29         2           44         8           39         6           36         1           42         12           33         8           27         2           28         45         6           18         0 | 1999-2001           Red         Purple           58         10         0           26         10         0           20         0         0           20         0         0           29         2         0           44         8         2           39         6         0           36         1         0           42         12         2           33         8         0           27         2         0           28         45         6         0           18         0         0         0 | 1999-2001         Wgt. Avg           58         10         0         24.3           26         10         0         13.7           20         0         0         6.7           29         2         0         10.7           44         8         2         20.0           39         6         0         16.0           36         1         0         12.5           42         12         2         21.3           33         8         0         15.0           27         2         0         10.0           28         45         6         0         18.0           18         0         0         6.0         14.0 | 1999-2001         Wgt. Avg         Grade           58         10         0         24.3         F           26         10         0         13.7         F           20         0         0         6.7         F           29         2         0         10.7         F           44         8         2         20.0         F           39         6         0         16.0         F           42         12         2         21.3         F           33         8         0         15.0         F           27         2         0         10.0         F           25         45         6         0         18.0         F | 1999-2001<br>OrangeNgt. AvgGrade1998-20<br>Wgt. Avg5810024.3F33.82610013.7F13.720006.7F8.3292010.7F13.3448220.0F21.7396016.0F23.7361012.5F11.34212221.3F20.0338015.0F15.8272010.0F13.728456018.0F21.018006.0F $*$ | 1999-2001         Wgt. Avg         Grade         1998-2000           58         10         0         24.3         F         33.8         F           26         10         0         13.7         F         13.7         F           20         0         0         6.7         F         8.3         F           29         2         0         10.7         F         13.3         F           44         8         2         20.0         F         21.7         F           39         6         0         16.0         F         23.7         F           36         1         0         12.5         F         11.3         F           42         12         2         21.3         F         20.0         F           33         8         0         15.0         F         15.8         F           27         2         0         10.0         F         13.7         F           28         45         6         0         18.0         F         21.0         F           18         0         0         6.0         F         *         * | Orange         Red         Purple         Wgt. Avg         Grade         Wgt. Avg         Grade         Wgt. Avg           58         10         0         24.3         F         33.8         F         41.2           26         10         0         13.7         F         13.7         F         17.8           20         0         0         6.7         F         8.3         F         8.0           29         2         0         10.7         F         13.3         F         14.7           44         8         2         20.0         F         21.7         F         22.3           39         6         0         16.0         F         23.7         F         27.8           36         1         0         12.5         F         11.3         F         *           42         12         2         21.3         F         20.0         F         25.3           33         8         0         15.0         F         15.8         F         20.2           27         2         0         10.0         F         13.7         F         17.7           25 </td <td>1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999         Wgt. Avg         Grade           58         10         0         24.3         F         33.8         F         41.2         F           26         10         0         13.7         F         13.7         F         17.8         F           20         0         0         6.7         F         8.3         F         8.0         F           29         2         0         10.7         F         13.3         F         14.7         F           44         8         2         20.0         F         21.7         F         22.3         F           39         6         0         16.0         F         23.7         F         27.8         F           36         1         0         12.5         F         11.3         F         *         *           42         12         2         21.3         F         20.0         F         25.3         F           33         8         0         15.0         F         15.8         F         20.2         F           27         2</td> <td>1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999         1996-           58         10         0         24.3         F         33.8         F         41.2         F         34.8           26         10         0         13.7         F         13.7         F         17.8         F         12.3           20         0         0.6.7         F         8.3         F         8.0         F         57           29         2         0         10.7         F         13.3         F         14.7         F         12.2           44         8         2         20.0         F         21.7         F         22.3         F         18.5           39         6         0         16.0         F         23.7         F         27.8         F         18.3           36         1         0         12.5         F         11.3         F         *         *         *           42         12         2         21.3         F         20.0         F         25.3         F         20.5           33         8         0         15.0         F         1</td> | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999         Wgt. Avg         Grade           58         10         0         24.3         F         33.8         F         41.2         F           26         10         0         13.7         F         13.7         F         17.8         F           20         0         0         6.7         F         8.3         F         8.0         F           29         2         0         10.7         F         13.3         F         14.7         F           44         8         2         20.0         F         21.7         F         22.3         F           39         6         0         16.0         F         23.7         F         27.8         F           36         1         0         12.5         F         11.3         F         *         *           42         12         2         21.3         F         20.0         F         25.3         F           33         8         0         15.0         F         15.8         F         20.2         F           27         2 | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999         1996-           58         10         0         24.3         F         33.8         F         41.2         F         34.8           26         10         0         13.7         F         13.7         F         17.8         F         12.3           20         0         0.6.7         F         8.3         F         8.0         F         57           29         2         0         10.7         F         13.3         F         14.7         F         12.2           44         8         2         20.0         F         21.7         F         22.3         F         18.5           39         6         0         16.0         F         23.7         F         27.8         F         18.3           36         1         0         12.5         F         11.3         F         *         *         *           42         12         2         21.3         F         20.0         F         25.3         F         20.5           33         8         0         15.0         F         1 |

(7) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(8) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(10) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

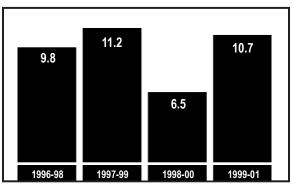
(11) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### **American Lung Association of Massachusetts**

One Abbey Lane Middleboro, MA 02346-3230 (508) 947-7204 www.lungusa.org/massachusetts

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Barnstable | 222,230        | 37,618          | 51,265         | 2,513               | 15,877          | 8,962                 | 3,970     |  |  |  |  |  |
| Berkshire  | 134,953        | 24,455          | 24,223         | 1,669               | 9,674           | 5,111                 | 2,026     |  |  |  |  |  |
| Bristol    | 534,678        | 110,158         | 75,512         | 7,284               | 38,121          | 18,941                | 6,735     |  |  |  |  |  |
| Essex      | 723,419        | 153,569         | 100,306        | 10,075              | 51,096          | 25,555                | 9,114     |  |  |  |  |  |
| Hampden    | 456,228        | 98,538          | 66,251         | 6,573               | 31,788          | 15,953                | 5,797     |  |  |  |  |  |
| Hampshire  | 152,251        | 24,209          | 18,327         | 1,651               | 11,809          | 5,574                 | 1,776     |  |  |  |  |  |
| Middlesex  | 1,465,396      | 278,589         | 187,307        | 18,198              | 108,671         | 52,516                | 17,579    |  |  |  |  |  |
| Suffolk    | 689,807        | 117,831         | 76,163         | 7,712               | 53,889          | 24,343                | 7,223     |  |  |  |  |  |
| Worcester  | 750,963        | 161,741         | 97,969         | 10,642              | 53,120          | 26,041                | 8,985     |  |  |  |  |  |
| TOTAL      | 5,129,925      | 1,006,708       | 697,323        | 66,317              | 374,046         | 182,996               | 63,205    |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>MASSACHUSETTS</u>



**Barnstable County Air Quality Trends** 

Each bar marks the Weighted Averages for Barnstable County for each period.

Г

#### **Changes for 2003 Report**

- Berkshire County's grade dropped from a B to an F.
- Suffolk County's grade dropped from a D to an F.
- Barnstable County replaces Bristol County as having the worst record of high ozone days in the state.

|            |        |     | - F    | ligh     | Oz    | one      | Day   | ys       |       |                        |       |
|------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|------------------------|-------|
|            |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 1999  | <br>1996- <sup>-</sup> | 1998  |
| County     | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg               | Grade |
| Barnstable | 21     | 6   | 1      | 10.7     | F     | 6.5      | F     | 11.2     | F     | 9.8                    | F     |
| Berkshire  | 17     | 1   | 0      | 6.2      | F     | 0.7      | В     | 0.7      | В     | 1.0                    | С     |
| Bristol    | 21     | 7   | 0      | 10.5     | F     | 7.3      | F     | 11.5     | F     | 11.0                   | F     |
| Essex      | 18     | 3   | 0      | 7.5      | F     | 6.3      | F     | 8.7      | F     | 7.0                    | F     |
| Hampden    | 16     | 1   | 0      | 5.8      | F     | 4.3      | F     | 7.0      | F     | 5.7                    | F     |
| Hampshire  | 20     | 3   | 0      | 8.2      | F     | 6.0      | F     | 8.2      | F     | 6.3                    | F     |
| Middlesex  | 20     | 1   | 0      | 7.2      | F     | 5.7      | F     | 7.8      | F     | 5.8                    | F     |
| Suffolk    | 12     | 2   | 0      | 5.0      | F     | 3.0      | D     | 3.7      | F     | 2.0                    | С     |
| Worcester  | 15     | 0   | 0      | 5.0      | F     | 5.3      | F     | 6.7      | F     | 4.0                    | F     |
|            |        |     |        |          |       |          |       |          |       |                        |       |
|            |        |     |        |          |       |          |       |          |       |                        |       |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

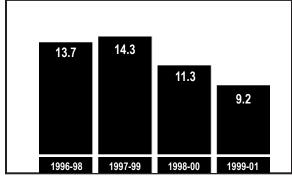


#### American Lung Association of Michigan

25900 Greenfield Road, Suite 401 Oak Park, MI 48237 (248) 784-2000 www.alam.org

|                |           | At-             | Risk           | Grou                | ps              |                       |           |
|----------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County         | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Allegan        | 105,665   | 25,219          | 11,725         | 1,686               | 6,823           | 3,486                 | 1,155     |
| Benzie         | 15,998    | 3,108           | 2,803          | 207                 | 1,082           | 601                   | 239       |
| Berrien        | 162,453   | 34,943          | 23,449         | 2,339               | 10,753          | 5,735                 | 2,106     |
| Cass           | 51,104    | 10,680          | 6,927          | 722                 | 3,407           | 1,823                 | 659       |
| Clinton        | 64,753    | 14,945          | 7,034          | 1,006               | 4,215           | 2,181                 | 728       |
| Genesee        | 436,141   | 100,365         | 50,607         | 6,614               | 28,696          | 14,710                | 4,924     |
| Grand Traverse | 77,654    | 16,155          | 10,144         | 1,091               | 5,217           | 2,732                 | 958       |
| Huron          | 36,079    | 6,996           | 7,006          | 484                 | 2,395           | 1,357                 | 566       |
| Ingham         | 279,320   | 54,417          | 26,251         | 3,614               | 19,749          | 9,511                 | 2,761     |
| Kalamazoo      | 238,603   | 48,154          | 27,148         | 3,174               | 16,549          | 8,256                 | 2,634     |
| Kent           | 574,335   | 135,635         | 59,625         | 8,973               | 37,707          | 18,689                | 5,863     |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# MICHIGAN

#### Berrien County Air Quality Trends



Each bar marks the Weighted Averages for Berrien County for each period.

#### **Changes for 2003 Report**

- Ingham County's grade improved from an F to a D.
- Missaukee County's grade dropped from a D to an F.
- Muskegon County replaces Allegan County as having the worst record of high ozone days.

|             |        |     | H      | ligh     | Oz    | one      | Day   | ys                 |       |            |       |
|-------------|--------|-----|--------|----------|-------|----------|-------|--------------------|-------|------------|-------|
|             |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997- <sup>-</sup> | 1999  | <br>1996-′ | 1998  |
| County      | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade | Wgt. Avg   | Grade |
| Allegan     | 22     | 3   | 0      | 8.8      | F     | 12.0     | F     | 13.3               | F     | 11.8       | F     |
| Benzie      | 20     | 2   | 0      | 7.7      | F     | 7.0      | F     | 7.5                | F     | 4.2        | F     |
| Berrien     | 26     | 1   | 0      | 9.2      | F     | 11.3     | F     | 14.3               | F     | 13.7       | F     |
| Cass        | 23     | 1   | 0      | 8.2      | F     | 8.2      | F     | 9.5                | F     | 8.8        | F     |
| Clinton     | 9      | 0   | 0      | 3.0      | D     | 2.3      | D     | 2.3                | D     | 0.7        | В     |
| Genesee     | 26     | 1   | 0      | 9.2      | F     | 7.0      | F     | 7.3                | F     | 5.0        | F     |
| Grand Trave | erse * | *   | *      | *        | *     | *        | *     | *                  | *     | *          | *     |
| Huron       | 10     | 2   | 0      | 4.3      | F     | 3.8      | F     | 4.5                | F     | 2.3        | D     |
| Ingham      | 9      | 0   | 0      | 3.0      | D     | 3.3      | F     | 3.3                | F     | 3.0        | D     |
| Kalamazoo   | 16     | 0   | 0      | 5.3      | F     | 5.0      | F     | 6.7                | F     | 4.7        | F     |
| Kent        | 19     | 0   | 0      | 6.3      | F     | 6.3      | F     | 6.0                | F     | 4.3        | F     |
|             |        |     |        |          |       |          |       |                    |       |            |       |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

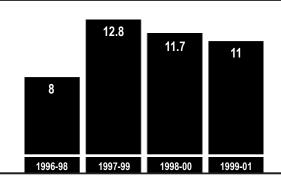


#### American Lung Association of Michigan

25900 Greenfield Road, Suite 401 Oak Park, MI 48237 (248) 784-2000 www.alam.org

| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Lenawee   | 98,890    | 20,967          | 12,523         | 1,419               | 6,606           | 3,443                 | 1,193     |
| Macomb    | 788,149   | 159,052         | 107,651        | 10,495              | 53,959          | 28,057                | 9,828     |
| Mason     | 28,274    | 5,559           | 4,748          | 379                 | 1,896           | 1,047                 | 411       |
| Missaukee | 14,478    | 3,179           | 2,143          | 217                 | 942             | 506                   | 189       |
| Muskegon  | 170,200   | 38,765          | 21,887         | 2,592               | 11,127          | 5,778                 | 2,014     |
| Oakland   | 1,194,156 | 252,191         | 134,959        | 16,632              | 81,114          | 41,461                | 13,647    |
| Ottawa    | 238,314   | 57,152          | 24,112         | 3,782               | 15,551          | 7,711                 | 2,409     |
| St. Clair | 164,235   | 36,339          | 20,088         | 2,432               | 10,868          | 5,630                 | 1,928     |
| Washtenaw | 322,895   | 60,056          | 26,271         | 3,942               | 23,349          | 11,062                | 3,025     |
| Wayne     | 2,061,162 | 490,692         | 248,982        | 31,946              | 134,482         | 68,731                | 23,208    |
| TOTAL     | 7,122,858 | 1,574,569       | 836,083        | 103,746             | 476,486         | 242,510               | 80,445    |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# MICHIGAN

#### Muskegon County Air Quality Trends



Each bar marks the Weighted Averages for Muskegon County for each period.

#### Changes for 2003 Report

- Ingham County's grade improved from an F to a D.
- Missaukee County's grade dropped from a D to an F.
- Muskegon County replaces Allegan County as having the worst record of high ozone days.

|           |        |     | H      | ligh     | Oz    | one      | Day   | ys                 |       |            |       |
|-----------|--------|-----|--------|----------|-------|----------|-------|--------------------|-------|------------|-------|
|           |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997- <sup>-</sup> | 1999  | <br>1996-′ | 1998  |
| County    | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade | Wgt. Avg   | Grade |
| Lenawee   | 8      | 0   | 0      | 2.7      | D     | 2.3      | D     | 2.0                | С     | 3.3        | F     |
| Macomb    | 25     | 3   | 0      | 9.8      | F     | 9.2      | F     | 11.5               | F     | 10.2       | F     |
| Mason     | 20     | 4   | 0      | 8.7      | F     | 8.3      | F     | 9.2                | F     | 6.8        | F     |
| Missaukee | 10     | 0   | 0      | 3.3      | F     | 3.0      | D     | *                  | *     | *          | *     |
| Muskegon  | 28     | 2   | 1      | 11.0     | F     | 11.7     | F     | 12.8               | F     | 8.0        | F     |
| Oakland   | 14     | 0   | 0      | 4.7      | F     | 4.0      | F     | 4.3                | F     | 2.3        | D     |
| Ottawa    | 15     | 0   | 0      | 5.0      | F     | 5.0      | F     | 6.0                | F     | 4.7        | F     |
| St. Clair | 12     | 1   | 0      | 4.5      | F     | 6.8      | F     | 8.2                | F     | 8.2        | F     |
| Washtenaw | 14     | 2   | 0      | 5.7      | F     | 3.5      | F     | 3.8                | F     | 3.7        | F     |
| Wayne     | 24     | 0   | 0      | 8.0      | F     | 7.3      | F     | 8.7                | F     | 6.3        | F     |
|           |        |     |        |          |       |          |       |                    |       |            |       |
|           |        |     |        |          |       |          |       |                    |       |            |       |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



#### American Lung Association of Minnesota

490 Concordia Avenue St. Paul, MN 55103-2441 (651) 227-8014 www.alamn.org

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Anoka      | 298,084        | 72,123          | 21,082         | 4,768               | 14,182          | 9,450                 | 2,634     |  |  |  |  |  |
| Carlton    | 31,671         | 6,440           | 4,784          | 444                 | 1,548           | 1,131                 | 421       |  |  |  |  |  |
| Dakota     | 355,904        | 87,181          | 26,246         | 5,744               | 16,844          | 11,252                | 3,172     |  |  |  |  |  |
| Lake       | 11,058         | 1,986           | 2,211          | 136                 | 558             | 430                   | 181       |  |  |  |  |  |
| Mille Lacs | 22,330         | 4,822           | 3,602          | 333                 | 1,063           | 787                   | 304       |  |  |  |  |  |
| St. Louis  | 200,528        | 35,917          | 32,274         | 2,479               | 10,181          | 7,462                 | 2,803     |  |  |  |  |  |
| Washington | 201,130        | 49,329          | 15,267         | 3,275               | 9,510           | 6,433                 | 1,880     |  |  |  |  |  |
| TOTAL      | 1,120,705      | 257,798         | 105,466        | 17,179              | 53,886          | 36,945                | 11,394    |  |  |  |  |  |

#### Notes

112


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>MINNESOTA</u>

#### Washington County Air Quality Trends

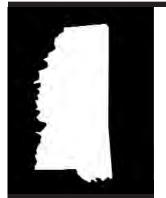


Each bar marks the Weighted Averages for Washington County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Carlton County.
- Sufficient data are now available for Mille Lacs County to grade it a B, after having no grade in the 2002 report.

|        |                            | H                                                                                                                                                                                                                        | ligh                                                                                                                                                                                                                                                                                                                                                                                                   | Oz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orange | 199<br>Red                 | 9-2001<br>Purple                                                                                                                                                                                                         | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                               | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1998<br>Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1      | 0                          | 0                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *      | *                          | *                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0      | 0                          | 0                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                    | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0      | 0                          | 0                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                    | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1      | 0                          | 0                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0      | 0                          | 0                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                    | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2      | 0                          | 0                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 1<br>*<br>0<br>0<br>1<br>0 | Orange         Red           1         0           *         *           0         0           0         0           1         0           0         0           0         0           1         0           0         0 | 1999-2001           Red         Purple           1         0         0           1         0         0           *         *         *           0         0         0           0         0         0           1         0         0           *         *         *           0         0         0           0         0         0           1         0         0           0         0         0 | 1999-2001         Wgt. Avg           1         0         0.3           1         0         0.3           *         *         *           0         0         0.0           0         0         0.0           1         0         0         0.0           1         0         0         0.0           1         0         0         0.0           0         0         0.0         0.0           1         0         0         0.3           1         0         0         0.0           1         0         0         0.3           0         0         0         0.0 | 1999-2001         Wgt. Avg         Grade           1         0         0.3         B           1         *         *         *         *           0         0         0.3         B           *         *         *         *           0         0         0.0         A           0         0         0.0         A           1         0         0         0.0         A           0         0         0.3         B         B           0         0         0.0         A         A           0         0         0.0         A         A           0         0         0.3         B         A           0         0         0.3         A         A | 1999-2001         Wgt. Avg         Grade         1998-20           Orange         Red         Purple         Wgt. Avg         Grade         Wgt. Avg           1         0         0         0.3         B         0.3           *         *         *         *         *         *           0         0         0.0         A         0.0           0         0         0         0.0         A         0.0           1         0         0         0.3         B         *           0         0         0.0         A         0.0         0           1         0         0         0.3         B         *           0         0         0.0         A         0.0         0           1         0         0         0.3         B         * | 1999-2001         Wgt. Avg         Grade         1998-2000           0         Red         Purple         Wgt. Avg         Grade         Wgt. Avg         Grade           1         0         0         0.3         B         0.3         B           *         *         *         *         *         *         *           0         0         0.0         A         0.0         A           0         0         0.0         A         0.0         A           1         0         0         0.0         A         0.0         A           0         0         0.0         A         0.0         A         A           1         0         0         0.3         B         *         *           0         0         0.0         A         A         A         A | OrangeRedPurpleWgt. AvgGradeWgt. AvgGradeWgt. Avg1000.3B0.3B0.3*******000.0A0.0A0.0000.0A0.0A0.01000.3B***000.0A0.0A0.01000.0A0.0A0.0 | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999           0         0         0.3         B         0.3         B         0.3         B           1         0         0         0.3         B         0.3         B         0.3         B           *         *         *         *         *         *         *         *         *           0         0         0.00         A         0.0         A         0.0         A           0         0         0.0         A         0.0         A         0.0         A           1         0         0         0.0         A         0.0         A         *           0         0         0.0         A         0.0         A         A         A           1         0         0         0.3         B         *         *         *         *           1         0         0         0.3         B         *         *         *         *           0         0         0.0         A         0.0         A         0.0         A         A | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999         1996-7           0         0         0.3         B         0.3         Constrained         Constrained |


### (6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

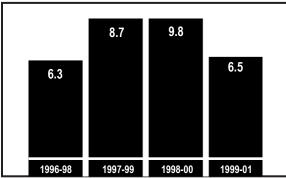


#### American Lung Association of Mississippi

P.O. Box 2178 Ridgeland, MS 39158 (601) 206-5810 www.lungusa.org/mississippi

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Adams      | 34,340    | 7,492           | 5,345          | 508                 | 1,404           | 1,213                 | 463       |  |  |  |  |  |  |
| Alcorn     | 34,558    | 6,848           | 5,121          | 456                 | 1,468           | 1,255                 | 460       |  |  |  |  |  |  |
| Bolivar    | 40,633    | 9,732           | 4,480          | 666                 | 1,578           | 1,309                 | 426       |  |  |  |  |  |  |
| DeSoto     | 107,199   | 25,617          | 9,538          | 1,670               | 4,283           | 3,495                 | 1,056     |  |  |  |  |  |  |
| Hancock    | 42,967    | 8,968           | 6,009          | 597                 | 1,805           | 1,541                 | 561       |  |  |  |  |  |  |
| Harrison   | 189,601   | 41,101          | 21,002         | 2,731               | 7,755           | 6,415                 | 2,060     |  |  |  |  |  |  |
| Hinds      | 250,800   | 57,756          | 27,513         | 3,875               | 9,973           | 8,251                 | 2,652     |  |  |  |  |  |  |
| Jackson    | 131,420   | 30,110          | 13,547         | 2,010               | 5,299           | 4,383                 | 1,407     |  |  |  |  |  |  |
| Lauderdale | 78,161    | 17,183          | 11,067         | 1,150               | 3,177           | 2,702                 | 972       |  |  |  |  |  |  |
| Lee        | 75,755    | 17,524          | 8,683          | 1,159               | 3,043           | 2,536                 | 842       |  |  |  |  |  |  |
| Madison    | 74,674    | 17,990          | 7,271          | 1,182               | 2,945           | 2,414                 | 744       |  |  |  |  |  |  |
| Panola     | 34,274    | 8,271           | 4,142          | 557                 | 1,341           | 1,125                 | 384       |  |  |  |  |  |  |
| Warren     | 49,644    | 11,690          | 5,788          | 783                 | 1,976           | 1,655                 | 560       |  |  |  |  |  |  |
| TOTAL      | 1,144,026 | 260,282         | 129,506        | 17,346              | 46,045          | 38,294                | 12,587    |  |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>MISSISSIPPI</u>

#### DeSoto County Air Quality Trends



Each bar marks the Weighted Averages for DeSoto County for each period.

. . .

#### **Changes for 2003 Report**

- Monitoring data are now available for Alcorn County.
- Sufficient data are now available to grade Bolivar County a D and Harrison County an F after having a grade for neither in the 2002 report.
- Adams County's grade improved from a D to a C.
- The grades for Hinds County, Madison County, and Warren County improved from a C to a B.

|            |        |            |                  | ligh     | Oz    | one                 | Day | ys                |   |                                |   |
|------------|--------|------------|------------------|----------|-------|---------------------|-----|-------------------|---|--------------------------------|---|
| County     | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | -1997<br>Wgt. Avg |   | 1996- <sup>2</sup><br>Wgt. Avg |   |
|            |        |            |                  |          |       |                     |     |                   |   |                                |   |
| Adams      | 6      | 0          | 0                | 2.0      | С     | 3.0                 | D   | 2.0               | С | 2.0                            | С |
| Alcorn     | *      | *          | *                | *        | *     | *                   | *   | *                 | * | *                              | * |
| Bolivar    | 8      | 0          | 0                | 2.7      | D     | *                   | *   | *                 | * | *                              | * |
| DeSoto     | 18     | 1          | 0                | 6.5      | F     | 9.8                 | F   | 8.7               | F | 6.3                            | F |
| Hancock    | 16     | 0          | 0                | 5.3      | F     | 6.3                 | F   | 5.0               | F | 2.7                            | D |
| Harrison   | 17     | 0          | 0                | 5.7      | F     | *                   | *   | *                 | * | *                              | * |
| Hinds      | 2      | 0          | 0                | 0.7      | В     | 1.3                 | С   | 1.0               | С | 0.7                            | В |
| Jackson    | 12     | 1          | 0                | 4.5      | F     | 8.2                 | F   | 9.7               | F | 9.0                            | F |
| Lauderdale | 4      | 0          | 0                | 1.3      | С     | 1.7                 | С   | 1.3               | С | 0.7                            | В |
| Lee        | 14     | 0          | 0                | 4.7      | F     | 6.7                 | F   | 6.0               | F | 2.7                            | D |
| Madison    | 2      | 0          | 0                | 0.7      | В     | 2.0                 | С   | 2.0               | С | 1.3                            | С |
| Panola     | *      | *          | *                | *        | *     | *                   | *   | *                 | * | *                              | * |
| Warren     | 1      | 0          | 0                | 0.3      | В     | 1.3                 | С   | 1.0               | С | 1.3                            | С |
|            |        |            |                  |          |       |                     |     |                   |   |                                |   |
|            |        |            |                  |          |       |                     |     |                   |   |                                |   |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



### American Lung Association of Eastern Missouri

1118 Hampton AvenueSt. Louis, MO 63139-3196(314) 645-5505www.lungusa.org/easternmissouri

### American Lung Association of Western Missouri

2007 Broadway Kansas City, MO 64108-2080 (816) 842-5242 www.lungusa.org/westernmissouri

|                | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|----------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County         | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Cass           | 82,092         | 19,477          | 9,636          | 1,289               | 4,912           | 2,742                 | 929       |  |  |  |  |  |
| Cedar          | 13,733         | 2,669           | 2,855          | 187                 | 824             | 522                   | 226       |  |  |  |  |  |
| Clay           | 184,006        | 39,617          | 19,848         | 2,628               | 11,498          | 6,262                 | 2,005     |  |  |  |  |  |
| Greene         | 240,391        | 44,393          | 32,668         | 2,959               | 15,582          | 8,660                 | 2,958     |  |  |  |  |  |
| Jackson        | 654,880        | 141,203         | 81,981         | 9,333               | 40,604          | 22,531                | 7,623     |  |  |  |  |  |
| Jefferson      | 198,099        | 45,694          | 18,199         | 3,056               | 12,111          | 6,511                 | 1,996     |  |  |  |  |  |
| Monroe         | 9,311          | 1,956           | 1,637          | 133                 | 559             | 339                   | 136       |  |  |  |  |  |
| Platte         | 73,781         | 15,732          | 6,505          | 1,052               | 4,653           | 2,502                 | 758       |  |  |  |  |  |
| St. Charles    | 283,883        | 68,779          | 24,852         | 4,548               | 17,137          | 9,132                 | 2,746     |  |  |  |  |  |
| Ste. Genevieve | 17,842         | 3,840           | 2,592          | 263                 | 1,078           | 625                   | 231       |  |  |  |  |  |
| St. Louis      | 1,016,315      | 211,384         | 143,262        | 14,156              | 62,888          | 36,039                | 12,980    |  |  |  |  |  |
| St. Louis City | 348,189        | 75,200          | 47,842         | 4,958               | 21,502          | 11,938                | 4,126     |  |  |  |  |  |
| TOTAL          | 3,122,522      | 669,944         | 391,877        | 44,563              | 193,347         | 107,804               | 36,715    |  |  |  |  |  |

#### Notes

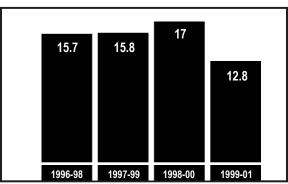
116

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire states' sensitive populations.

(2) City population estimates overlap with county population estimates causing an overestimate of disease. Therefore, city estimates were excluded from total.

(3) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.

(4) **Pediatric asthma** estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 1999 based on national rates (NHIS) applied to county population estimates (US Census).


(5) Adult asthma estimates are for those 18 years and older and represents the estimated number of people who had asthma during 2000 based on state rates (BRFSS) applied to county population estimates (US Census).

(6) Chronic bronchitis estimates are for adults 18 and over who had been diagnosed with this disease within 1999 based on national rates (NHIS) applied to county

## MISSOURI

#### Changes for 2003 Report

■ Platte County's grade improved from an F to a D.



St. Charles County Air Quality Trends

Each bar marks the Weighted Averages for St. Charles County for each period.

# High Ozone Days

|                |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-1998 |       |  |
|----------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|-----------|-------|--|
| County         | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg  | Grade |  |
| Cass           | *      | *   | *      | *        | *     | *        | *     | *        | *     | *         | *     |  |
| Cedar          | 11     | 0   | 0      | 3.7      | F     | 5.0      | F     | *        | *     | *         | *     |  |
| Clay           | 13     | 0   | 0      | 4.3      | F     | 8.0      | F     | 9.5      | F     | 10.2      | F     |  |
| Greene         | 3      | 1   | 0      | 1.5      | С     | 1.5      | С     | 1.2      | С     | 0.7       | В     |  |
| Jackson        | *      | *   | *      | *        | *     | *        | *     | 0.8      | В     | 0.0       | А     |  |
| Jefferson      | 19     | 2   | 0      | 7.3      | F     | 7.8      | F     | 8.7      | F     | 6.3       | F     |  |
| Monroe         | 8      | 1   | 0      | 3.2      | D     | 3.2      | D     | 3.5      | F     | 2.3       | D     |  |
| Platte         | 7      | 0   | 0      | 2.3      | D     | 3.3      | F     | 3.7      | F     | 4.0       | F     |  |
| St. Charles    | 35     | 1   | 1      | 12.8     | F     | 17.0     | F     | 15.8     | F     | 15.7      | F     |  |
| Ste. Geneviev  | re 16  | 2   | 0      | 6.3      | F     | 8.0      | F     | 6.5      | F     | 5.5       | F     |  |
| St. Louis      | 27     | 1   | 0      | 9.5      | F     | 11.3     | F     | 11.7     | F     | 9.3       | F     |  |
| St. Louis City | 11     | 1   | 0      | 4.2      | F     | 4.8      | F     | 3.8      | F     | 4.0       | F     |  |
|                |        |     |        |          |       |          |       |          |       |           |       |  |
|                |        |     |        |          |       |          |       |          |       |           |       |  |

(7) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(8) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(10) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

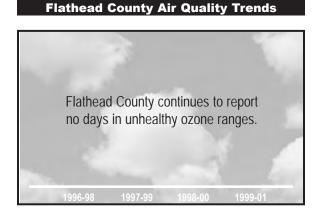
(11) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



### American Lung Association of the Nothern Rockies

825 Helena AvenueHelena, MT 59601-3459(406) 442-6556www.lungusa/northernrockies

|           | At-Risk Groups  |                                                                   |                                                                                                        |                                                                                 |                                                                                                     |                                                                    |  |  |  |  |
|-----------|-----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Total Pop | 14 and<br>Under | 65 and<br>Over                                                    | Pediatric<br>Asthma                                                                                    | Adult<br>Asthma                                                                 | Chronic<br>Bronchitis                                                                               | Emphysema                                                          |  |  |  |  |
| 74,471    | 15,487          | 9,656                                                             | 1,067                                                                                                  | 4,332                                                                           | 2,640                                                                                               | 943                                                                |  |  |  |  |
| 74,471    | 15,487          | 9,656                                                             | 1,067                                                                                                  | 4,332                                                                           | 2,640                                                                                               | 943                                                                |  |  |  |  |
|           | 74,471          | Total Pop         14 and<br>Under           74,471         15,487 | Total Pop         14 and<br>Under         65 and<br>Over           74,471         15,487         9,656 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>Asthma74,47115,4879,6561,067 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br>Asthma74,47115,4879,6561,0674,332 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br> |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# MONTANA



#### Changes for 2003 Report

- There were no changes from the 2002 report.
- Flathead County continues to report no days in unhealthy ozone ranges.

|          |        |            | H                | ligh     | Oz    | one                 | Day | ys                 |   | ┣━                 |   |
|----------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------|---|
| County   | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-⁄<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |
| Flathead | 0      | 0          | 0                | 0.0      | A     | 0.0                 | A   | 0.0                | A | 0.0                | A |
|          |        |            |                  |          |       |                     |     |                    |   |                    |   |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.



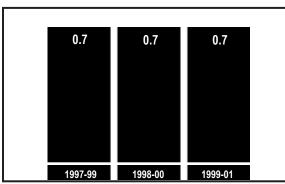
#### American Lung Association of Nebraska

7101 Newport Avenue, #303 Omaha, NE 68152 (402) 572-3030 www.lungnebraska.org

|           |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Douglas   | 463,585   | 102,584         | 50,795         | 6,814               | 19,785          | 15,557                | 4,983     |  |  |  |  |  |  |
| Lancaster | 250,291   | 48,798          | 26,080         | 3,253               | 11,143          | 8,599                 | 2,611     |  |  |  |  |  |  |
| TOTAL     | 713,876   | 151,382         | 76,875         | 10,067              | 30,928          | 24,155                | 7,594     |  |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.


(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### NEBRASKA

#### **Changes for 2003 Report**

■ There were no changes from the 2002 report.



Douglas County Air Quality Trends

Each bar marks the Weighted Averages for Douglas County for each period.

# High Ozone Days 1999-2001 1998-2000 1997-1999

|           |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 1999  | 1996-1   | 1998  |
|-----------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County    | Orange | Red | Purple | Wgt. Avg | Grade |
| Douglas   | 2      | 0   | 0      | 0.7      | В     | 0.7      | В     | 0.7      | В     | 0.0      | А     |
| Lancaster | 0      | 0   | 0      | 0.0      | A     | 0.0      | A     | 0.0      | A     | 0.0      | A     |
|           |        |     |        |          |       |          |       |          |       |          |       |
|           |        |     |        |          |       |          |       |          |       |          |       |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of Idaho/Nevada

P.O. Box 7056 Reno, NV 89510 (775) 829-5864 www.lungusa.org/idaho-nevada

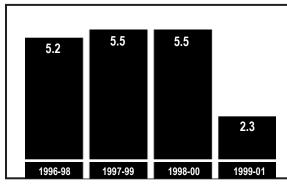
|             | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |  |
|-------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County      | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Clark       | 1,375,765      | 300,700         | 146,899        | 26,446              | 66,422          | 39,096                | 14,404    |  |  |  |  |  |
| Douglas     | 41,259         | 8,039           | 6,257          | 647                 | 2,132           | 1,351                 | 575       |  |  |  |  |  |
| Washoe      | 339,486        | 71,359          | 35,797         | 6,346               | 16,583          | 9,791                 | 3,619     |  |  |  |  |  |
| White Pine  | 9,181          | 1,816           | 1,239          | 183                 | 492             | 296                   | 114       |  |  |  |  |  |
| Carson City | 52,457         | 10,257          | 7,837          | 940                 | 2,717           | 1,682                 | 691       |  |  |  |  |  |
| TOTAL       | 1,818,148      | 392,171         | 198,029        | 34,561              | 88,347          | 52,216                | 19,404    |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire states' sensitive populations.

(2) City population estimates overlap with county population estimates causing an overestimate of disease. Therefore, city estimates were excluded from total.

(3) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(4) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 1999 based on


(4) Fedaric astimates are for those under 18 years of age and represent the estimated number of people who had an astimate attack during 1999 based on national rates (NHIS) applied to county population estimates (US Census).

(6) Chronic bronchitis estimates are for adults 18 and over who had been diagnosed with this disease within 1999 based on national rates (NHIS) applied to county

<sup>(5)</sup> Adult asthma estimates are for those 18 years and older and represents the estimated number of people who had asthma during 2000 based on state rates (BRFSS) applied to county population estimates (US Census).

#### **Changes for 2003 Report**

Clark County's grade improved from an F to a D.



Clark County Air Quality Trends

Each bar marks the Weighted Averages for Clark County for each period.

|             |        |            | ŀ                | ligh     | Oz    | one                 | Day | ys                 |   |                    |   |
|-------------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------|---|
| County      | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-1<br>Wgt. Avg |   | 1996-⁄<br>Wgt. Avg |   |
| Clark       | 7      | 0          | 0                | 2.3      | D     | 5.5                 | F   | 5.5                | F | 5.2                | F |
| Douglas     | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | 0.0                | A |
| Washoe      | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В   | 0.3                | В | 0.0                | A |
| White Pine  | 0      | 0          | 0                | 0.0      | А     | 0.0                 | A   | 0.0                | А | 0.0                | A |
| Carson City | 0      | 0          | 0                | 0.0      | A     | 0.0                 | A   | 0.0                | А | *                  | * |
|             |        |            |                  |          |       |                     |     |                    |   |                    |   |
|             |        |            |                  |          |       |                     |     |                    |   |                    |   |

(7) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(8) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(10)Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(11) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

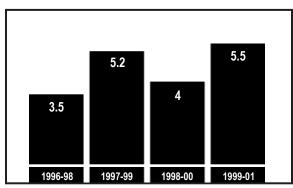


#### American Lung Association of New Hampshire

9 Cedarwood Drive, Unit 12 Bedford, NH 03110 (603) 669-2411 www.nhlung.org

| County       | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|--------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Belknap      | 56,325    | 10,852          | 8,496          | 737                 | 3,593           | 2,078                 | 777       |
| Carroll      | 43,666    | 8,027           | 7,789          | 546                 | 2,789           | 1,673                 | 673       |
| Cheshire     | 73,825    | 14,027          | 10,086         | 951                 | 4,776           | 2,670                 | 940       |
| Coos         | 33,111    | 6,092           | 6,113          | 418                 | 2,109           | 1,259                 | 510       |
| Grafton      | 81,743    | 14,587          | 10,973         | 989                 | 5,400           | 2,990                 | 1,032     |
| Hillsborough | 380,841   | 84,324          | 40,526         | 5,542               | 23,948          | 12,902                | 4,137     |
| Merrimack    | 136,225   | 28,107          | 16,923         | 1,877               | 8,660           | 4,790                 | 1,637     |
| Rockingham   | 277,359   | 61,499          | 28,087         | 4,055               | 17,402          | 9,442                 | 3,024     |
| Strafford    | 112,233   | 22,020          | 12,593         | 1,469               | 7,330           | 3,889                 | 1,228     |
| Sullivan     | 40,458    | 7,942           | 6,384          | 534                 | 2,567           | 1,493                 | 568       |
| TOTAL        | 1,235,786 | 257,477         | 147,970        | 17,119              | 78,575          | 43,187                | 14,526    |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates. (3) **Pediatric asthma** estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>NEW HAMPSHIRE</u>

#### Hillsborough County Air Quality Trends



Each bar marks the Weighted Averages for Hillsborough County for each period.

#### **Changes for 2003 Report**

- Merrimack County's grade dropped from an A to a B.
- Strafford County's grade dropped from a B to a C.
- Sufficient data are now available to grade Coos County a C, after having no grade in the 2002 report.
- Hillsborough County replaces Rockingham County as having the worst record of high ozone days.

| High | Ozone | Days |
|------|-------|------|
|------|-------|------|

| County       | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-⁄<br>Wgt. Avg |   | 1996-⁄<br>Wgt. Avg |   |
|--------------|--------|------------|------------------|----------|-------|---------------------|---|--------------------|---|--------------------|---|
| Baldwin      | *      | *          | *                | *        | *     | *                   | * | *                  | * | *                  | * |
| Belknap      | *      | *          | *                | *        | *     | *                   | * | 0.3                | В | 0.3                | В |
| Carroll      | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А | 0.0                | А | 0.0                | А |
| Cheshire     | 3      | 0          | 0                | 1.0      | С     | 1.0                 | С | 1.0                | С | 1.0                | С |
| Coos         | 4      | 0          | 0                | 1.3      | С     | *                   | * | *                  | * | *                  | * |
| Grafton      | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А | 0.0                | А | 0.3                | В |
| Hillsborough | 15     | 1          | 0                | 5.5      | F     | 4.0                 | F | 5.2                | F | 3.5                | F |
| Merrimack    | 1      | 0          | 0                | 0.3      | В     | 0.0                 | А | 0.3                | В | 1.0                | С |
| Rockingham   | 13     | 2          | 0                | 5.3      | F     | 4.2                 | F | 7.7                | F | 6.8                | F |
| Strafford    | 3      | 0          | 0                | 1.0      | С     | 0.7                 | В | 1.2                | С | 1.2                | С |
| Sullivan     | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В | 0.3                | В | 0.7                | В |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.



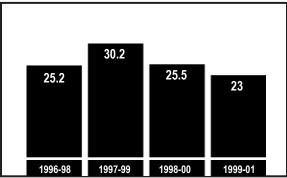
#### American Lung Association of New Jersey

1600 Route 22 East Union, NJ 07083-3410 (908) 687-9340 www.lungusa.org/newjersey

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Atlantic   | 252,552   | 53,962          | 34,437         | 3,531               | 11,818          | 8,860                 | 3,122     |  |  |  |  |  |
| Bergen     | 884,118   | 171,036         | 134,820        | 11,229              | 42,172          | 32,537                | 12,008    |  |  |  |  |  |
| Camden     | 508,932   | 113,309         | 63,769         | 7,529               | 23,465          | 17,392                | 5,964     |  |  |  |  |  |
| Cumberland | 146,438   | 30,871          | 19,087         | 2,057               | 6,876           | 5,090                 | 1,752     |  |  |  |  |  |
| Essex      | 793,633   | 174,972         | 94,380         | 11,444              | 37,189          | 27,076                | 8,984     |  |  |  |  |  |
| Gloucester | 254,673   | 55,675          | 29,678         | 3,712               | 11,863          | 8,701                 | 2,898     |  |  |  |  |  |
| Hudson     | 608,975   | 115,456         | 69,271         | 7,604               | 30,282          | 21,265                | 6,636     |  |  |  |  |  |
| Hunterdon  | 121,989   | 26,593          | 12,228         | 1,735               | 5,727           | 4,245                 | 1,380     |  |  |  |  |  |
| Mercer     | 350,761   | 70,864          | 44,140         | 4,664               | 16,830          | 12,362                | 4,169     |  |  |  |  |  |
| Middlesex  | 750,162   | 149,530         | 92,590         | 9,823               | 36,330          | 26,358                | 8,725     |  |  |  |  |  |
| Monmouth   | 615,301   | 135,509         | 76,923         | 8,867               | 28,519          | 21,421                | 7,419     |  |  |  |  |  |
| Morris     | 470,212   | 99,565          | 54,530         | 6,461               | 22,263          | 16,553                | 5,557     |  |  |  |  |  |
| Ocean      | 510,916   | 100,475         | 113,260        | 6,583               | 23,361          | 19,514                | 8,497     |  |  |  |  |  |
| Passaic    | 489,049   | 108,083         | 59,033         | 7,050               | 22,909          | 16,687                | 5,560     |  |  |  |  |  |
| TOTAL      | 6,757,711 | 1,405,900       | 898,146        | 92,290              | 319,604         | 238,062               | 82,670    |  |  |  |  |  |

#### Notes

126


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates. (3) **Pediatric asthma** estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>NEW JERSEY</u>

#### Candem County Air Quality Trends



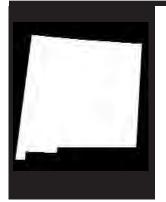
Each bar marks the Weighted Averages for Candem County for each period.

ľ

#### **Changes for 2003 Report**

There were no changes in grades or monitors from the 2002 report.

|            |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-1998 |       |  |
|------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|-----------|-------|--|
| County     | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg  | Grade |  |
| Atlantic   | 26     | 0   | 0      | 8.7      | F     | 13.0     | F     | 18.3     | F     | 18.3      | F     |  |
| Bergen     | *      | *   | *      | *        | *     | *        | *     | *        | *     | 3.0       | D     |  |
| Camden     | 48     | 14  | 0      | 23.0     | F     | 25.5     | F     | 30.2     | F     | 25.2      | F     |  |
| Cumberland | 30     | 5   | 0      | 12.5     | F     | 13.2     | F     | 16.7     | F     | 12.8      | F     |  |
| Essex      | *      | *   | *      | *        | *     | *        | *     | 6.2      | F     | 4.8       | F     |  |
| Gloucester | 37     | 8   | 0      | 16.3     | F     | 17.8     | F     | 21.8     | F     | 18.0      | F     |  |
| Hudson     | 20     | 5   | 1      | 9.8      | F     | 10.0     | F     | 12.3     | F     | 7.5       | F     |  |
| Hunterdon  | 37     | 6   | 0      | 15.3     | F     | 18.2     | F     | 21.8     | F     | 16.2      | F     |  |
| Mercer     | 35     | 10  | 3      | 18.7     | F     | 19.2     | F     | 21.3     | F     | 15.5      | F     |  |
| Middlesex  | 38     | 9   | 2      | 18.5     | F     | 17.5     | F     | 19.7     | F     | 14.2      | F     |  |
| Monmouth   | 21     | 4   | 0      | 9.0      | F     | 12.5     | F     | 15.2     | F     | 15.2      | F     |  |
| Morris     | 34     | 6   | 0      | 14.3     | F     | 16.8     | F     | 18.8     | F     | 15.2      | F     |  |
| Ocean      | 40     | 12  | 1      | 20.0     | F     | 22.2     | F     | 25.8     | F     | 22.3      | F     |  |
| Passaic    | 24     | 0   | 0      | 8.0      | F     | 8.0      | F     | *        | *     | *         | *     |  |


(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



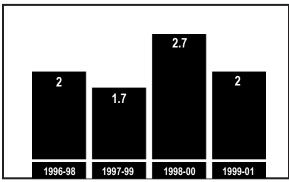
#### American Lung Association of Arizona/New Mexico, Inc.

102 West McDowell Road Phoenix, AZ 85003-1299 (602) 258-7505 www.lungusa.org/arizonanewmexico

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Bernalillo | 556,678   | 117,008         | 64,156         | 7,798               | 28,823          | 19,180                | 6,292     |  |  |  |  |  |
| Doña Ana   | 174,682   | 43,021          | 18,512         | 2,870               | 8,456           | 5,589                 | 1,783     |  |  |  |  |  |
| Eddy       | 51,658    | 12,160          | 7,589          | 824                 | 2,573           | 1,762                 | 662       |  |  |  |  |  |
| Sandoval   | 89,908    | 22,112          | 9,542          | 457                 | 1,523           | 1,020                 | 344       |  |  |  |  |  |
| San Juan   | 113,801   | 30,217          | 10,326         | 1,470               | 4,405           | 2,933                 | 962       |  |  |  |  |  |
| Valencia   | 66,152    | 16,594          | 6,723          | 1,102               | 3,210           | 2,130                 | 687       |  |  |  |  |  |
| TOTAL      | 1,052,879 | 241,112         | 116,848        | 14,523              | 48,989          | 32,614                | 10,731    |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.


(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# NEW MEXICO

#### Changes for 2003 Report

Doña Ana County's grade improved from a D to a C.



Doña Ana County Air Quality Trends

Each bar marks the Weighted Averages for Doña Ana County for each period.

|            |        | High Ozone Days |                  |          |       |                     |   |                    |   |                    |   |  |
|------------|--------|-----------------|------------------|----------|-------|---------------------|---|--------------------|---|--------------------|---|--|
| County     | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-⁄<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |  |
| Bernalillo | 2      | 0               | 0                | 0.7      | В     | 0.3                 | В | 0.3                | В | 0.0                | A |  |
| Doña Ana   | 6      | 0               | 0                | 2.0      | С     | 2.7                 | D | 1.7                | С | 2.0                | С |  |
| Eddy       | 0      | 0               | 0                | 0.0      | А     | 0.0                 | А | 0.0                | А | *                  | * |  |
| Sandoval   | 1      | 0               | 0                | 0.3      | В     | 0.3                 | В | 0.3                | В | 0.3                | В |  |
| San Juan   | 2      | 0               | 0                | 0.7      | В     | 0.7                 | В | 0.0                | А | *                  | * |  |
| Valencia   | 0      | 0               | 0                | 0.0      | А     | 0.0                 | А | 0.0                | A | 0.0                | А |  |
|            |        |                 |                  |          |       |                     |   |                    |   |                    |   |  |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



### American Lung Association of New York State

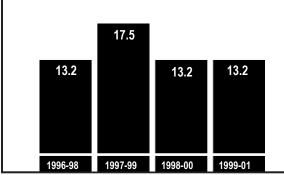
3 Winners Circle, Suite 300 Albany, NY 12205-2804 (518) 453-0172 www.alanys.org

### American Lung Association of the City of New York

432 Park Avenue South, 8<sup>th</sup> Floor New York, NY 10016 (212) 889-3370 www.lungusa.org/newyork

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Albany     | 294,565   | 55,025          | 42,594         | 3,676               | 16,863          | 10,714                | 3,803     |  |  |  |  |  |
| Bronx      | 1,332,650 | 337,315         | 133,948        | 21,975              | 69,856          | 42,260                | 13,138    |  |  |  |  |  |
| Chautauqua | 139,750   | 27,822          | 22,372         | 1,893               | 7,754           | 5,055                 | 1,910     |  |  |  |  |  |
| Chemung    | 91,070    | 18,212          | 14,222         | 1,228               | 5,067           | 3,287                 | 1,227     |  |  |  |  |  |
| Dutchess   | 280,150   | 58,675          | 33,690         | 3,886               | 15,619          | 9,760                 | 3,274     |  |  |  |  |  |
| Erie       | 950,265   | 191,558         | 151,258        | 12,749              | 52,912          | 34,383                | 12,917    |  |  |  |  |  |
| Essex      | 38,851    | 7,172           | 6,227          | 490                 | 2,207           | 1,441                 | 543       |  |  |  |  |  |
| Hamilton   | 5,379     | 817             | 1,076          | 59                  | 315             | 218                   | 92        |  |  |  |  |  |
| Herkimer   | 64,427    | 12,736          | 10,844         | 868                 | 3,573           | 2,362                 | 918       |  |  |  |  |  |
| Jefferson  | 111,738   | 24,792          | 12,627         | 1,635               | 6,121           | 3,723                 | 1,185     |  |  |  |  |  |
| Madison    | 69,441    | 14,067          | 8,661          | 957                 | 3,874           | 2,430                 | 825       |  |  |  |  |  |
| Monroe     | 735,343   | 157,363         | 95,779         | 10,411              | 40,568          | 25,605                | 8,877     |  |  |  |  |  |
| New York   | 1,537,195 | 218,694         | 186,776        | 14,263              | 95,490          | 57,988                | 18,217    |  |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# NEW YORK

#### New York County Air Quality Trends



Each bar marks the Weighted Averages for New York County for each period.

#### **Changes for 2003 Report**

- Albany County's grade dropped from a C to an F.
- The grades for Essex County, Monroe County, and Saratoga County dropped from a D to an F.
- Ulster County's grade dropped from a C to a D.

|            |        |            | H                | ligh     | Oz    | one                 | Day | ys                 |   |                                |   |
|------------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------------------|---|
| County     | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-⁄<br>Wgt. Avg |   | 1996- <sup>-</sup><br>Wgt. Avg |   |
| ,          | 0      |            |                  |          |       |                     |     | 0 0                |   |                                |   |
| Albany     | 10     | 0          | 0                | 3.3      | F     | 1.3                 | С   | 1.7                | С | 1.3                            | С |
| Bronx      | 8      | 2          | 0                | 3.7      | F     | 3.7                 | F   | 5.2                | F | 3.7                            | F |
| Chautauqua | 29     | 1          | 0                | 10.2     | F     | 9.8                 | F   | 9.7                | F | 9.8                            | F |
| Chemung    | 5      | 0          | 0                | 1.7      | С     | 1.7                 | С   | 1.3                | С | 1.7                            | С |
| Dutchess   | 18     | 0          | 0                | 6.0      | F     | 6.0                 | F   | 7.7                | F | 6                              | F |
| Erie       | 17     | 3          | 0                | 7.2      | F     | 7.8                 | F   | 6.5                | F | 7.8                            | F |
| Essex      | 11     | 0          | 0                | 3.7      | F     | 2.7                 | D   | 2.7                | D | 2.7                            | D |
| Hamilton   | 4      | 0          | 0                | 1.3      | С     | 1.0                 | С   | 1.0                | С | 1                              | С |
| Herkimer   | 1      | 0          | 0                | 0.3      | В     | 0.3                 | В   | 0.0                | А | 0.3                            | В |
| Jefferson  | 21     | 3          | 0                | 8.5      | F     | 3.7                 | F   | 6.0                | F | 3.7                            | F |
| Madison    | 4      | 0          | 0                | 1.3      | С     | 1.3                 | С   | 1.0                | С | 1.3                            | С |
| Monroe     | 11     | 0          | 0                | 3.7      | F     | 3.0                 | D   | 3.7                | F | 3                              | D |
| New York   | 27     | 7          | 1                | 13.2     | F     | 13.2                | F   | 17.5               | F | 13.2                           | F |
|            |        |            |                  |          |       |                     |     |                    |   |                                |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



### American Lung Association of New York State

3 Winners Circle, Suite 300 Albany, NY 12205-2804 (518) 453-0172 www.alanys.org

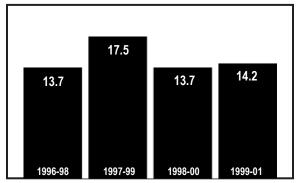
### American Lung Association of the City of New York

432 Park Avenue South, 8<sup>th</sup> Floor New York, NY 10016 (212) 889-3370 www.lungusa.org/newyork

|             | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |
|-------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|
| County      | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |
| Niagara     | 219,846        | 44,711          | 33,884         | 2,999               | 12,193          | 7,904                 | 2,942     |  |  |  |  |
| Oneida      | 235,469        | 46,047          | 38,753         | 3,110               | 13,157          | 8,596                 | 3,273     |  |  |  |  |
| Onondaga    | 458,336        | 98,384          | 63,294         | 6,530               | 25,162          | 15,995                | 5,676     |  |  |  |  |
| Orange      | 341,367        | 83,315          | 35,185         | 5,483               | 18,092          | 11,153                | 3,590     |  |  |  |  |
| Putnam      | 95,745         | 21,368          | 9,147          | 1,403               | 5,278           | 3,263                 | 1,034     |  |  |  |  |
| Queens      | 2,229,379      | 426,705         | 283,042        | 28,160              | 127,842         | 79,251                | 26,391    |  |  |  |  |
| Richmond    | 443,728        | 94,953          | 51,433         | 6,263               | 24,624          | 15,352                | 5,100     |  |  |  |  |
| Saratoga    | 200,635        | 41,909          | 22,984         | 2,779               | 11,215          | 7,000                 | 2,322     |  |  |  |  |
| Schenectady | 146,555        | 29,817          | 24,398         | 1,972               | 8,133           | 5,338                 | 2,052     |  |  |  |  |
| Suffolk     | 1,419,369      | 313,924         | 167,558        | 20,465              | 78,110          | 48,877                | 16,414    |  |  |  |  |
| Ulster      | 177,749        | 34,495          | 23,711         | 2,310               | 10,087          | 6,414                 | 2,246     |  |  |  |  |
| Wayne       | 93,765         | 21,269          | 11,399         | 1,422               | 5,057           | 3,197                 | 1,101     |  |  |  |  |
| Westchester | 923,459        | 195,992         | 128,964        | 12,763              | 51,230          | 32,775                | 11,737    |  |  |  |  |
| TOTAL       | 12,636,226     | 2,577,137       | 1,613,826      | 169,750             | 710,399         | 444,340               | 150,804   |  |  |  |  |

#### Notes

132


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# NEW YORK

#### **Richmond County Air Quality Trends**



Each bar marks the Weighted Averages for Richmond County for each period.

Г

#### **Changes for 2003 Report**

- Albany County's grade dropped from a C to an F.
- The grades for Essex County, Monroe County, and Saratoga County dropped from a D to an F.
- Ulster County's grade dropped from a C to a D.

|             |        |     | H      | ligh     | Oz    | one      | Day   | ys       |       |                    |       |
|-------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|--------------------|-------|
|             |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996- <sup>,</sup> | 1998  |
| County      | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade |
| Niagara     | 19     | 1   | 0      | 6.8      | F     | 5.3      | F     | 4.7      | F     | 5.3                | F     |
| Oneida      | 5      | 0   | 0      | 1.7      | С     | 1.0      | С     | 0.7      | В     | 1                  | С     |
| Onondaga    | 9      | 0   | 0      | 3.0      | D     | 2.7      | D     | 3.0      | D     | 2.7                | D     |
| Orange      | 20     | 1   | 0      | 7.2      | F     | 5.2      | F     | 6.8      | F     | 5.2                | F     |
| Putnam      | 23     | 3   | 0      | 9.2      | F     | 8.2      | F     | 10.2     | F     | 8.2                | F     |
| Queens      | 15     | 1   | 0      | 5.5      | F     | 7.2      | F     | 9.3      | F     | 7.2                | F     |
| Richmond    | 31     | 5   | 2      | 14.2     | F     | 13.7     | F     | 17.5     | F     | 13.7               | F     |
| Saratoga    | 14     | 0   | 0      | 4.7      | F     | 3.0      | D     | 3.7      | F     | 3                  | D     |
| Schenectady | 4      | 0   | 0      | 1.3      | С     | 1.0      | С     | 1.0      | С     | 1                  | С     |
| Suffolk     | 24     | 8   | 0      | 12.0     | F     | 12.7     | F     | 15.3     | F     | 12.7               | F     |
| Ulster      | 7      | 0   | 0      | 2.3      | D     | 1.7      | С     | 2.7      | D     | 1.7                | С     |
| Wayne       | 13     | 0   | 0      | 4.3      | F     | 4.0      | F     | 5.0      | F     | 4                  | F     |
| Westchester | 15     | 7   | 0      | 8.5      | F     | 7.7      | F     | 10.2     | F     | 7.7                | F     |

### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

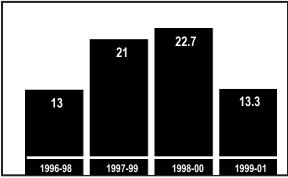
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

### A P: Ri (9 w

#### American Lung Association of North Carolina

P.O. Box 27985 Raleigh, NC 27611-7985 (919) 832-8326 www.lungnc.org

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Alexander  | 33,603    | 6,874           | 3,996          | 455                 | 1,605           | 1,173                 | 398       |  |  |  |  |  |
| Avery      | 17,167    | 2,740           | 2,698          | 184                 | 872             | 647                   | 238       |  |  |  |  |  |
| Buncombe   | 206,330   | 37,404          | 31,776         | 2,496               | 10,171          | 7,606                 | 2,827     |  |  |  |  |  |
| Caldwell   | 77,415    | 15,282          | 10,259         | 1,004               | 3,748           | 2,769                 | 978       |  |  |  |  |  |
| Camden     | 6,885     | 1,398           | 933            | 93                  | 329             | 245                   | 88        |  |  |  |  |  |
| Caswell    | 23,501    | 4,553           | 3,060          | 301                 | 1,142           | 845                   | 298       |  |  |  |  |  |
| Chatham    | 49,329    | 9,327           | 7,530          | 613                 | 2,422           | 1,809                 | 671       |  |  |  |  |  |
| Cumberland | 302,963   | 72,100          | 23,395         | 4,678               | 13,779          | 9,382                 | 2,580     |  |  |  |  |  |
| Davie      | 34,835    | 7,085           | 4,807          | 468                 | 1,671           | 1,246                 | 451       |  |  |  |  |  |
| Duplin     | 49,063    | 10,711          | 6,316          | 708                 | 2,289           | 1,672                 | 583       |  |  |  |  |  |
| Durham     | 223,314   | 43,847          | 21,574         | 2,832               | 10,831          | 7,511                 | 2,221     |  |  |  |  |  |
| Edgecombe  | 55,606    | 12,542          | 6,963          | 833                 | 2,554           | 1,881                 | 661       |  |  |  |  |  |
| Forsyth    | 306,067   | 61,970          | 38,549         | 4,049               | 14,667          | 10,661                | 3,642     |  |  |  |  |  |
| Franklin   | 47,260    | 10,081          | 5,194          | 661                 | 2,230           | 1,604                 | 523       |  |  |  |  |  |
| Granville  | 48,498    | 9,726           | 5,545          | 641                 | 2,343           | 1,683                 | 550       |  |  |  |  |  |
| Guilford   | 421,048   | 84,712          | 49,476         | 5,521               | 20,159          | 14,490                | 4,784     |  |  |  |  |  |
| Haywood    | 54,033    | 9,314           | 10,272         | 621                 | 2,708           | 2,101                 | 861       |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

Haywood County Air Quality Trends



Each bar marks the Weighted Averages for Haywood County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Randolph County.
- Avery County's grade improved from a C to a B
- The grades for Camden County, Martin County, and New Hanover County improved from a D to a C.
- Chatham County's grade improved from an F to a C.
- Swain County's grade improved from a B to an A.
- Sufficient data are now available to grade Jackson County and Union County an F.
- Rowan County replaces Mecklenburg County as having the worst record of high ozone days.

|            |        | 199 | 9-2001 |          |       | 1998-20  | 000 | 1997-1   | 999 | 1996-1998 |       |  |
|------------|--------|-----|--------|----------|-------|----------|-----|----------|-----|-----------|-------|--|
| County     | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg |     | Wgt. Avg |     | Wgt. Avg  | Grade |  |
| Alexander  | 16     | 0   | 0      | 5.3      | F     | 9.0      | F   | 7.0      | F   | 6.3       | F     |  |
| Avery      | 1      | 0   | 0      | 0.3      | В     | 1.3      | С   | *        | *   | *         | *     |  |
| Buncombe   | 10     | 0   | 0      | 3.3      | F     | 4.7      | F   | 2.3      | D   | 1.7       | С     |  |
| Caldwell   | 24     | 0   | 0      | 8.0      | F     | 10.8     | F   | 9.8      | F   | *         | *     |  |
| Camden     | 6      | 0   | 0      | 2.0      | С     | 2.3      | D   | 2.7      | D   | *         | *     |  |
| Caswell    | 23     | 0   | 0      | 7.7      | F     | 12.0     | F   | 13.7     | F   | 13.3      | F     |  |
| Chatham    | 5      | 0   | 0      | 1.7      | С     | 4.7      | F   | 7.3      | F   | 6.7       | F     |  |
| Cumberland | 28     | 0   | 0      | 9.3      | F     | 16.3     | F   | 16.3     | F   | 13.7      | F     |  |
| Davie      | 49     | 2   | 1      | 18.0     | F     | 20.5     | F   | 18.2     | F   | 10.5      | F     |  |
| Duplin     | 9      | 0   | 0      | 3.0      | D     | 7.0      | F   | 6.7      | F   | 4.0       | F     |  |
| Durham     | 19     | 0   | 0      | 6.3      | F     | 11.0     | F   | 9.0      | F   | 7.7       | F     |  |
| Edgecombe  | 16     | 0   | 0      | 5.3      | F     | 6.3      | F   | 7.0      | F   | 4.7       | F     |  |
| Forsyth    | 38     | 2   | 0      | 13.7     | F     | 16.2     | F   | 17.2     | F   | 13.5      | F     |  |
| Franklin   | 14     | 0   | 0      | 4.7      | F     | 8.3      | F   | 10.7     | F   | 10.0      | F     |  |
| Granville  | 14     | 1   | 0      | 5.2      | F     | 9.5      | F   | 11.2     | F   | 14.8      | F     |  |
| Guilford   | 30     | 0   | 0      | 10.0     | F     | 14.7     | F   | 13.0     | F   | 7.7       | F     |  |
| Haywood    | 40     | 0   | 0      | 13.3     | F     | 22.7     | F   | 21.0     | F   | 13.0      | F     |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

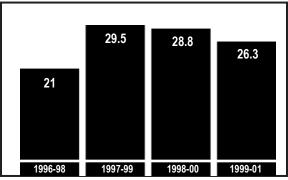
(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of North Carolina

P.O. Box 27985 Raleigh, NC 27611-7985 (919) 832-8326 www.lungnc.org

| County      | At-Risk Groups |                 |                |                     |                 |                       |           |
|-------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
|             | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Jackson     | 33,121         | 5,193           | 4,560          | 348                 | 1,655           | 1,218                 | 428       |
| Johnston    | 121,965        | 27,146          | 11,973         | 1,760               | 5,719           | 4,048                 | 1,254     |
| Lenoir      | 59,648         | 12,433          | 8,734          | 834                 | 2,812           | 2,112                 | 787       |
| Lincoln     | 63,780         | 13,329          | 7,350          | 878                 | 3,033           | 2,206                 | 739       |
| Martin      | 25,593         | 5,389           | 3,894          | 361                 | 1,200           | 909                   | 347       |
| Mecklenburg | 695,454        | 148,639         | 59,724         | 9,636               | 32,990          | 22,830                | 6,572     |
| New Hanover | 160,307        | 28,124          | 20,567         | 1,858               | 7,947           | 5,772                 | 1,962     |
| Northampton | 22,086         | 4,415           | 3,840          | 297                 | 1,053           | 809                   | 324       |
| Person      | 35,623         | 7,184           | 4,890          | 473                 | 1,713           | 1,267                 | 453       |
| Pitt        | 133,798        | 26,568          | 12,828         | 1,745               | 6,322           | 4,395                 | 1,311     |
| Randolph    | 130,454        | 27,461          | 15,802         | 1,803               | 6,190           | 4,510                 | 1,534     |
| Rockingham  | 91,928         | 17,981          | 13,616         | 1,188               | 4,453           | 3,329                 | 1,229     |
| Rowan       | 130,340        | 27,030          | 18,205         | 1,779               | 6,185           | 4,554                 | 1,632     |
| Swain       | 12,968         | 2,580           | 1,982          | 174                 | 619             | 468                   | 177       |
| Union       | 123,677        | 29,738          | 11,148         | 1,922               | 5,628           | 3,974                 | 1,210     |
| Wake        | 627,846        | 134,552         | 46,372         | 8,715               | 29,739          | 20,358                | 5,555     |
| Yancey      | 17,774         | 3,130           | 3,237          | 209                 | 884             | 683                   | 276       |
| TOTAL       | 4,443,279      | 920,558         | 481,065        | 60,138              | 211,661         | 150,767               | 48,144    |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

Rowan County Air Quality Trends



Each bar marks the Weighted Averages for Rowan County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Randolph County.
- Avery County's grade improved from a C to a B
- The grades for Camden County, Martin County, and New Hanover County improved from a D to a C.
- Chatham County's grade improved from an F to a C.
- Swain County's grade improved from a B to an A.
- Sufficient data are now available to grade Jackson County and Union County an F.
- Rowan County replaces Mecklenburg County as having the worst record of high ozone days.

|             |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-    | 1998  |
|-------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County      | Orange | Red | Purple | Wgt. Avg | Grade |
| Jackson     | 10     | 0   | 0      | 3.3      | F     | *        | *     | *        | *     | *        | *     |
| Johnston    | 18     | 3   | 0      | 7.5      | F     | 13.7     | F     | 16.2     | F     | 10.8     | F     |
| Lenoir      | 9      | 0   | 0      | 3.0      | D     | 5.7      | F     | *        | *     | *        | *     |
| Lincoln     | 31     | 1   | 0      | 10.8     | F     | 12.8     | F     | 8.7      | F     | 7.7      | F     |
| Martin      | 5      | 0   | 0      | 1.7      | С     | 2.7      | D     | 1.7      | С     | *        | *     |
| Mecklenburg | 58     | 8   | 1      | 24.0     | F     | 36.8     | F     | 38.7     | F     | 32.8     | F     |
| New Hanove  | r 3    | 0   | 0      | 1.0      | С     | 2.7      | D     | 2.7      | D     | 2.7      | D     |
| Northampton | 11     | 0   | 0      | 3.7      | F     | 5.3      | F     | 6.7      | F     | *        | *     |
| Person      | 25     | 0   | 0      | 8.3      | F     | 11.3     | F     | 12.3     | F     | *        | *     |
| Pitt        | 13     | 1   | 0      | 4.8      | F     | 7.2      | F     | 9.3      | F     | 6.7      | F     |
| Randolph    | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Rockingham  | 14     | 0   | 0      | 4.7      | F     | 3.3      | F     | 5.7      | F     | 7.2      | F     |
| Rowan       | 65     | 8   | 1      | 26.3     | F     | 28.8     | F     | 29.5     | F     | 21.0     | F     |
| Swain       | 0      | 0   | 0      | 0.0      | А     | 0.3      | В     | 0.3      | В     | 0.3      | В     |
| Union       | 21     | 0   | 0      | 7.0      | F     | *        | *     | *        | *     | *        | *     |
| Wake        | 36     | 8   | 0      | 16.0     | F     | 26.8     | F     | 30.2     | F     | 22.3     | F     |
| Yancey      | 19     | 0   | 0      | 6.3      | F     | 6.0      | F     | 4.7      | F     | 0.0      | А     |

High Ozono Dave

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

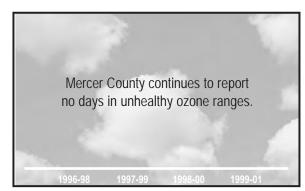
 $\square$ 

 $\triangleright$ 

#### American Lung Association of North Dakota

P.O. Box 5004 Bismarck, ND 58502-5004 (701) 223-5613 www.lungusa.org/northdakota

|          |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County   | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Billings | 888       | 157             | 142            | 12                  | 45              | 33                    | 13        |  |  |  |  |  |
| Cass     | 123,138   | 23,995          | 11,901         | 1,595               | 6,625           | 4,191                 | 1,225     |  |  |  |  |  |
| Dunn     | 3,600     | 781             | 625            | 55                  | 175             | 130                   | 53        |  |  |  |  |  |
| McKenzie | 5,737     | 1,402           | 900            | 97                  | 268             | 197                   | 78        |  |  |  |  |  |
| Mercer   | 8,644     | 1,932           | 1,233          | 139                 | 415             | 297                   | 112       |  |  |  |  |  |
| Oliver   | 2,065     | 419             | 293            | 31                  | 100             | 74                    | 29        |  |  |  |  |  |
| Steele   | 2,258     | 475             | 442            | 35                  | 109             | 82                    | 36        |  |  |  |  |  |
| TOTAL    | 146,330   | 29,161          | 15,536         | 1,964               | 7,737           | 5,004                 | 1,546     |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Mercer County Air Quality Trends



#### **Changes for 2003 Report**

- Sufficient data are now available to grade Dunn County with an A.
- Sufficient data no longer exist to grade Steele County.

|          |        |            | H                | ligh     | Oz    | one                 | Day | ys                 |   |                   |   |
|----------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|-------------------|---|
| County   | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-⁄<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |
| Billings | 0      | 0          | 0                | 0.0      | A     | 0.0                 | А   | *                  | * | *                 | * |
| Cass     | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | 0.0               | А |
| Dunn     | 0      | 0          | 0                | 0.0      | А     | *                   | *   | *                  | * | *                 | * |
| McKenzie | *      | *          | *                | *        | *     | *                   | *   | *                  | * | 0.0               | А |
| Mercer   | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | 0.0               | А |
| Oliver   | 0      | 0          | 0                | 0.0      | А     | 0.0                 | А   | 0.0                | А | 0.0               | А |
| Steele   | *      | *          | *                | *        | *     | 0.0                 | А   | 0.0                | А | 0.0               | А |
|          |        |            |                  |          |       |                     |     |                    |   |                   |   |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

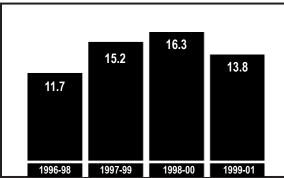
<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



#### American Lung Association of Ohio

1950 Arlingate Lane Coulmbus, OH 43228-4102 (614) 279-1700 www.lungusa.org/ohio

|           |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Allen     | 108,473   | 23,207          | 15,366         | 1,553               | 5,867           | 3,800                 | 1,369     |  |  |  |  |  |  |
| Ashtabula | 102,728   | 22,155          | 15,051         | 1,486               | 5,541           | 3,626                 | 1,340     |  |  |  |  |  |  |
| Butler    | 332,807   | 71,905          | 35,557         | 4,772               | 17,964          | 11,266                | 3,576     |  |  |  |  |  |  |
| Clark     | 144,742   | 29,974          | 21,262         | 2,010               | 7,917           | 5,186                 | 1,912     |  |  |  |  |  |  |
| Clermont  | 177,977   | 41,424          | 16,747         | 2,748               | 9,350           | 5,862                 | 1,815     |  |  |  |  |  |  |
| Clinton   | 40,543    | 8,876           | 4,932          | 592                 | 2,176           | 1,387                 | 468       |  |  |  |  |  |  |
| Cuyahoga  | 1,393,978 | 291,603         | 217,161        | 19,244              | 76,364          | 49,800                | 18,561    |  |  |  |  |  |  |
| Delaware  | 109,989   | 26,145          | 9,011          | 1,718               | 5,752           | 3,587                 | 1,067     |  |  |  |  |  |  |
| Franklin  | 1,068,978 | 227,531         | 104,306        | 14,838              | 58,286          | 35,875                | 10,726    |  |  |  |  |  |  |
| Geauga    | 90,895    | 21,303          | 10,878         | 1,426               | 4,758           | 3,121                 | 1,105     |  |  |  |  |  |  |
| Greene    | 147,886   | 28,948          | 17,492         | 1,955               | 8,207           | 5,216                 | 1,727     |  |  |  |  |  |  |
| Hamilton  | 845,303   | 181,089         | 113,898        | 12,065              | 45,745          | 29,306                | 10,244    |  |  |  |  |  |  |
| Jefferson | 73,894    | 12,860          | 13,752         | 875                 | 4,247           | 2,853                 | 1,148     |  |  |  |  |  |  |
| Knox      | 54,500    | 11,105          | 7,515          | 747                 | 2,991           | 1,930                 | 684       |  |  |  |  |  |  |
| Lake      | 227,511   | 45,471          | 32,044         | 3,043               | 12,595          | 8,204                 | 2,957     |  |  |  |  |  |  |
| Lawrence  | 62,319    | 12,494          | 8,966          | 844                 | 3,436           | 2,244                 | 817       |  |  |  |  |  |  |
| Licking   | 145,491   | 31,389          | 17,298         | 2,092               | 7,855           | 5,035                 | 1,703     |  |  |  |  |  |  |
| Logan     | 46,005    | 10,116          | 6,395          | 679                 | 2,463           | 1,603                 | 580       |  |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### Clinton County Air Quality Trends



Each bar marks the Weighted Averages for Clinton County for each period.

#### **Changes for 2003 Report**

- Jefferson County's grade dropped from a D to an F.
- Preble County's grade improved from a D to a C.

|           |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 1999  | 1996-1998 |       |
|-----------|--------|-----|--------|----------|-------|----------|-------|----------|-------|-----------|-------|
| County    | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg  | Grade |
| Allen     | 12     | 0   | 0      | 4.0      | F     | 6.0      | F     | 5.7      | F     | 5.8       | F     |
| Ashtabula | 20     | 3   | 0      | 8.2      | F     | 8.0      | F     | 9.5      | F     | 7.5       | F     |
| Butler    | 30     | 0   | 1      | 10.7     | F     | 15.2     | F     | 16.5     | F     | 15.3      | F     |
| Clark     | 24     | 2   | 0      | 9.0      | F     | 14.2     | F     | 15.3     | F     | 14.3      | F     |
| Clermont  | 28     | 2   | 0      | 10.3     | F     | 14.3     | F     | 13.3     | F     | 7.7       | F     |
| Clinton   | 37     | 3   | 0      | 13.8     | F     | 16.3     | F     | 15.2     | F     | 11.7      | F     |
| Cuyahoga  | 15     | 0   | 0      | 5.0      | F     | 6.2      | F     | 6.5      | F     | 9.0       | F     |
| Delaware  | 21     | 1   | 2      | 8.8      | F     | 11.7     | F     | 12.7     | F     | *         | *     |
| Franklin  | 22     | 1   | 0      | 7.8      | F     | 10.5     | F     | 11.8     | F     | 10.5      | F     |
| Geauga    | 36     | 1   | 0      | 12.5     | F     | 8.2      | F     | 10.5     | F     | *         | *     |
| Greene    | 15     | 1   | 0      | 5.5      | F     | 9.7      | F     | 12.2     | F     | *         | *     |
| Hamilton  | 18     | 2   | 0      | 7.0      | F     | 8.7      | F     | 10.8     | F     | 10.0      | F     |
| Jefferson | 13     | 0   | 0      | 4.3      | F     | 2.3      | D     | 1.7      | С     | 1.0       | С     |
| Knox      | 21     | 2   | 0      | 8.0      | F     | 8.3      | F     | 7.7      | F     | 7.2       | F     |
| Lake      | 23     | 2   | 0      | 8.7      | F     | 12.2     | F     | 13.7     | F     | 13.7      | F     |
| Lawrence  | 23     | 0   | 0      | 7.7      | F     | 11.8     | F     | 12.5     | F     | 8.3       | F     |
| Licking   | 19     | 1   | 0      | 6.8      | F     | 10.2     | F     | 10.7     | F     | 10.8      | F     |
| Logan     | *      | *   | *      | *        | *     | *        | *     | 2.7      | D     | 3.0       | D     |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

(11) Grades are as follows: A=0.0, B=0.3-0.9, C=1.0-2.0, D=2.1-3.2, F=3.3+.

## or each period.

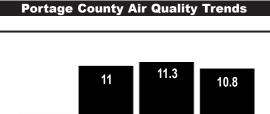


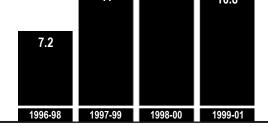
#### American Lung Association of Ohio

1950 Arlingate Lane Coulmbus, OH 43228-4102 (614) 279-1700 www.lungusa.org/ohio

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |
| Lorain     | 284,664        | 62,255          | 35,583         | 4,123               | 15,332          | 9,848                 | 3,390     |  |  |  |  |
| Lucas      | 455,054        | 99,799          | 59,441         | 6,607               | 24,478          | 15,669                | 5,432     |  |  |  |  |
| Madison    | 40,213         | 8,159           | 4,383          | 549                 | 2,208           | 1,389                 | 443       |  |  |  |  |
| Mahoning   | 257,555        | 50,547          | 45,729         | 3,382               | 14,355          | 9,555                 | 3,784     |  |  |  |  |
| Medina     | 151,095        | 34,442          | 15,913         | 2,297               | 7,994           | 5,105                 | 1,674     |  |  |  |  |
| Miami      | 98,868         | 20,920          | 13,096         | 1,418               | 5,348           | 3,481                 | 1,241     |  |  |  |  |
| Montgomery | 559,062        | 115,205         | 76,697         | 7,630               | 30,727          | 19,801                | 6,988     |  |  |  |  |
| Portage    | 152,061        | 29,809          | 16,688         | 1,997               | 8,450           | 5,297                 | 1,679     |  |  |  |  |
| Preble     | 42,337         | 8,939           | 5,573          | 610                 | 2,286           | 1,485                 | 527       |  |  |  |  |
| Stark      | 378,098        | 77,750          | 57,054         | 5,195               | 20,755          | 13,602                | 5,053     |  |  |  |  |
| Summit     | 542,899        | 113,663         | 76,572         | 7,520               | 29,701          | 19,235                | 6,901     |  |  |  |  |
| Trumbull   | 225,116        | 45,175          | 35,438         | 3,032               | 12,444          | 8,220                 | 3,118     |  |  |  |  |
| Union      | 40,909         | 9,527           | 3,941          | 625                 | 2,157           | 1,344                 | 413       |  |  |  |  |
| Warren     | 158,383        | 37,239          | 14,858         | 2,429               | 8,340           | 5,203                 | 1,594     |  |  |  |  |
| Washington | 63,251         | 12,159          | 9,463          | 823                 | 3,533           | 2,317                 | 855       |  |  |  |  |
| Wood       | 121,065        | 23,247          | 13,334         | 1,586               | 6,730           | 4,196                 | 1,319     |  |  |  |  |
| TOTAL      | 8,744,649      | 1,846,430       | 1,151,394      | 122,510             | 476,352         | 305,646               | 106,211   |  |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.


(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

T

 $\bigcirc$ 





Each bar marks the Weighted Averages for Portage County for each period.

#### **Changes for 2003 Report**

- Jefferson County's grade dropped from a D to an F.
- Preble County's grade improved from a D to a C.

|            | High Ozone Days |     |        |          |       |          |       |          |       |                        |       |  |
|------------|-----------------|-----|--------|----------|-------|----------|-------|----------|-------|------------------------|-------|--|
|            |                 | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 1999  | <br>1996- <sup>^</sup> | 1998  |  |
| County     | Orange          | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg               | Grade |  |
| Lorain     | 11              | 1   | 0      | 4.2      | F     | 3.8      | F     | 4.5      | F     | 5.7                    | F     |  |
| Lucas      | 14              | 2   | 0      | 5.7      | F     | 4.3      | F     | 5.3      | F     | 7.5                    | F     |  |
| Madison    | 21              | 2   | 0      | 8.0      | F     | 12.0     | F     | 13.3     | F     | 13.5                   | F     |  |
| Mahoning   | 12              | 1   | 0      | 4.5      | F     | 7.8      | F     | 8.5      | F     | 7.8                    | F     |  |
| Medina     | 17              | 0   | 0      | 5.7      | F     | 6.3      | F     | 7.3      | F     | 7.0                    | F     |  |
| Miami      | 12              | 0   | 0      | 4.0      | F     | 6.7      | F     | 7.3      | F     | 7.5                    | F     |  |
| Montgomery | 14              | 2   | 0      | 5.7      | F     | 8.0      | F     | 8.8      | F     | 9.5                    | F     |  |
| Portage    | 31              | 1   | 0      | 10.8     | F     | 11.3     | F     | 11.0     | F     | 7.2                    | F     |  |
| Preble     | 5               | 0   | 0      | 1.7      | С     | 2.3      | D     | 4.0      | F     | 4.7                    | F     |  |
| Stark      | 24              | 2   | 0      | 9.0      | F     | 11.5     | F     | 10.8     | F     | 8.5                    | F     |  |
| Summit     | 24              | 1   | 0      | 8.5      | F     | 9.8      | F     | 10.5     | F     | 9.5                    | F     |  |
| Trumbull   | 26              | 0   | 0      | 8.7      | F     | 11.7     | F     | 14.3     | F     | 13.0                   | F     |  |
| Union      | *               | *   | *      | *        | *     | *        | *     | 4.2      | F     | *                      | *     |  |
| Warren     | 20              | 1   | 0      | 7.2      | F     | 11.0     | F     | 12.7     | F     | 11.8                   | F     |  |
| Washington | 17              | 1   | 0      | 6.2      | F     | 9.0      | F     | 9.0      | F     | 6.5                    | F     |  |
| Wood       | 15              | 0   | 0      | 5.0      | F     | 3.3      | F     | 3.7      | F     | *                      | *     |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

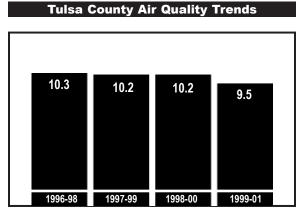


#### American Lung Association of Oklahoma

2805 East Skelly Drive, #806 Tulsa, OK 74105 (918) 747-3441 www.oklung.org

|           |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Carter    | 45,621    | 9,820           | 7,293          | 661                 | 2,348           | 1,624                 | 623       |  |  |  |  |  |  |
| Cherokee  | 42,521    | 9,079           | 5,097          | 617                 | 2,179           | 1,449                 | 483       |  |  |  |  |  |  |
| Cleveland | 208,016   | 41,460          | 17,537         | 2,815               | 10,905          | 7,011                 | 2,005     |  |  |  |  |  |  |
| Comanche  | 114,996   | 26,625          | 11,220         | 1,766               | 5,740           | 3,697                 | 1,103     |  |  |  |  |  |  |
| Jefferson | 6,818     | 1,326           | 1,372          | 90                  | 361             | 257                   | 108       |  |  |  |  |  |  |
| Кау       | 48,080    | 10,360          | 8,154          | 702                 | 2,467           | 1,718                 | 677       |  |  |  |  |  |  |
| Latimer   | 10,692    | 2,232           | 1,718          | 152                 | 553             | 381                   | 145       |  |  |  |  |  |  |
| Love      | 8,831     | 1,816           | 1,428          | 125                 | 459             | 321                   | 125       |  |  |  |  |  |  |
| McClain   | 27,740    | 6,000           | 3,321          | 412                 | 1,416           | 953                   | 326       |  |  |  |  |  |  |
| Marshall  | 13,184    | 2,532           | 2,576          | 171                 | 705             | 502                   | 209       |  |  |  |  |  |  |
| Oklahoma  | 660,448   | 140,333         | 80,716         | 9,347               | 34,135          | 22,688                | 7,575     |  |  |  |  |  |  |
| Ottawa    | 33,194    | 7,006           | 5,601          | 472                 | 1,719           | 1,195                 | 467       |  |  |  |  |  |  |
| Tulsa     | 563,299   | 123,696         | 66,735         | 8,182               | 28,866          | 19,175                | 6,363     |  |  |  |  |  |  |
| Total     | 1,783,440 | 382,285         | 212,768        | 25,512              | 91,855          | 60,971                | 20,210    |  |  |  |  |  |  |

#### Notes


144

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## OKLAHOMA



Each bar marks the Weighted Averages for Tulsa County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Carter County and Ottawa County.
- Monitoring data are no longer available for Muskogee County and Okmulgee County.
- The grades for Cleveland County and Comanche County improved from a D for each to a C.
- Latimer County's grade improved from a C to an A.
- McClain County's grade improved from a F to a C.
- Sufficient data are now available to grade Cherokee County, Jefferson County, Kay County, and Marshall County each an F.

### **High Ozone Days**

|        |                                                          |                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orange | Red                                                      | Purple                                                                                                                                                                                                                                         | Wgt. Avg                                              | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wgt. Avg                                                                                                | Grade                                                                                                                                                                                                                                                                                                            | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                               | Grade                                                                                                                                                                                      | Wgt. Avg                                                                                                                                                                                                         | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *      | *                                                        | *                                                                                                                                                                                                                                              | *                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16     | 0                                                        | 0                                                                                                                                                                                                                                              | 5.3                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4      | 0                                                        | 0                                                                                                                                                                                                                                              | 1.3                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2                                                                                                     | D                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                          | 2.2                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5      | 0                                                        | 0                                                                                                                                                                                                                                              | 1.7                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                     | D                                                                                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                          | 1.7                                                                                                                                                                                                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14     | 0                                                        | 0                                                                                                                                                                                                                                              | 4.7                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12     | 1                                                        | 0                                                                                                                                                                                                                                              | 4.5                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0      | 0                                                        | 0                                                                                                                                                                                                                                              | 0.0                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                     | С                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *      | *                                                        | *                                                                                                                                                                                                                                              | *                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6      | 0                                                        | 0                                                                                                                                                                                                                                              | 2.0                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                                                     | F                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                          | 2.0                                                                                                                                                                                                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13     | 1                                                        | 0                                                                                                                                                                                                                                              | 4.8                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10     | 0                                                        | 0                                                                                                                                                                                                                                              | 3.3                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                     | F                                                                                                                                                                                                                                                                                                                | 4.7                                                                                                                                                                                                                                                                                                                                                                    | F                                                                                                                                                                                          | 4.3                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *      | *                                                        | *                                                                                                                                                                                                                                              | *                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                       | *                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                          | *                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27     | 1                                                        | 0                                                                                                                                                                                                                                              | 9.5                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2                                                                                                    | F                                                                                                                                                                                                                                                                                                                | 10.2                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                          | 10.3                                                                                                                                                                                                             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                          |                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 16<br>4<br>5<br>14<br>12<br>0<br>*<br>6<br>13<br>10<br>* | Orange         Red           .*         .*           .16         .0           .4         .0           .5         .0           .14         .0           .12         .1           .0            .12            .13            .13            .13 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Orange         Red         Purple         Wgt. Avg           *         *         *         *           16         0         0         5.3           16         0         0         1.3           4         0         0         1.3           5         0         0         1.7           14         0         0         4.7           12         1         0         4.5           0         0         0.0         3.3           *         *         *         *           6         0         0         2.0           13         1         0         4.8           10         0         0         3.3           *         *         *         * | OrangeRedPurpleWgt. AvgGrade*****16005.3F4001.3C5001.7C14004.7F12104.5F000.0A******6002.0C13104.8F***** | OrangeRedPurpleWgt. AvgGradeWgt. Avg $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ 16005.3F $\star$ 16005.3F $\star$ 4001.3C3.25001.7C3.014004.7F $\star$ 12104.5F $\star$ 12100.0A2.0 $\star$ $\star$ $\star$ $\star$ $\star$ 6002.0C3.313104.8F $\star$ 1000.3.3F5.0 $\star$ $\star$ $\star$ $\star$ $\star$ | OrangeRedPurpleWgt. AvgGradeWgt. AvgGrade $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ 16005.3F $\star$ $\star$ 4001.3C3.2D5001.7C3.0D14004.7F $\star$ $\star$ 12104.5F $\star$ $\star$ 000.0A2.0C $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ 6002.0C3.3F13104.8F $\star$ $\star$ 10003.3F5.0F $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ $\star$ | OrangeRedPurpleWgt. AvgGradeWgt. AvgGradeWgt. AvgWgt. Avg********16005.3F***4001.3C3.2D2.85001.7C3.0D1.714004.7F***12104.5F***000.0A2.0C3.03.0********1000.0A5.0F4.7*1000.3F5.0F4.7******* | OrangeRedPurpleWgt. AvgGradeWgt. AvgGradeWgt. AvgGrade*********16005.3F****4001.3C3.2D2.8D5001.7C3.0D1.7C14004.7F***12104.5F***000.0A2.0C3.0D*******12104.5F***000.0A2.0C3.0D13104.8F***10003.3F5.0F4.7F******** | OrangeRedPurpleWgt. AvgGradeWgt. AvgGradeWgt. AvgGradeWgt. Avg $\cdot$ 16005.3F $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 16001.3C3.2D2.8D2.25001.7C3.0D1.7C1.714004.7F $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 12104.5F $\cdot$ 1000.0A $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 13104.8F $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 1000.03.3F $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ 1000.0 $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

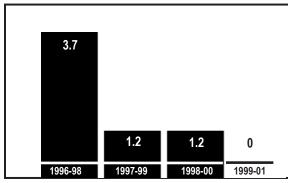


#### American Lung Association of Oregon

7420 SW Bridgeport Road, Suite 200 Tigard, OR 97224-7711 (513) 924-4094 www.lungoregon.org

| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Clackamas | 338,391   | 73,021          | 37,428         | 4,895               | 20,097          | 11,753                | 3,940     |
| Columbia  | 43,560    | 9,733           | 5,063          | 658                 | 2,551           | 1,501                 | 518       |
| Jackson   | 181,269   | 36,198          | 28,991         | 2,448               | 11,060          | 6,647                 | 2,549     |
| Lane      | 322,959   | 60,325          | 42,954         | 4,082               | 19,974          | 11,703                | 4,061     |
| Marion    | 284,834   | 64,732          | 35,206         | 4,311               | 16,523          | 9,609                 | 3,269     |
| Total     | 1,171,013 | 244,009         | 149,642        | 16,394              | 70,205          | 41,214                | 14,338    |
|           |           |                 |                |                     |                 |                       |           |

#### Notes


146

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Clackamas County Air Quality Trends



Each bar marks the Weighted Averages for Clackamas County for each period.

#### Changes for 2003 Report

- The grades for Clackamas County and Jackson County improved from a C to an A.
- The grades for Lane County and Marion County improved from a B to an A.

|        | High Ozone Days |                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|--------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        |                 |                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Orange | Red             | Purple                                                                                                                           | Wgt. Avg                                                                                                                                                                                                                                                           | Grade                                                                                                                                                                                                                                                                                                      | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                             | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wgt. Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0      | 0               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                | А                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0      | 0               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                | А                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                  | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0      | 0               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                | А                                                                                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0      | 0               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                | А                                                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0      | 0               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                  | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|        |                 |                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|        | 0<br>0<br>0     | Orange         Red           0         0           0         0           0         0           0         0           0         0 | 1999-2001           Red         Purple           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | 1999-2001         Wgt. Avg           0         0         0.0           0         0         0.0           0         0         0.0           0         0         0.0           0         0         0.0           0         0         0.0           0         0         0.0           0         0         0.0 | 1999-2001         Wgt. Avg         Grade           0         0         0.0         A           0         0         0.0         A           0         0         0.0         A           0         0         0         0.0         A | 1999-2001         Wgt. Avg         Grade         1998-20           Orange         Red         Purple         Wgt. Avg         Grade         Wgt. Avg           0         0         0         0.0         A         1.2           0         0         0         0.0         A         0.0           0         0         0         0.0         A         1.2           0         0         0         0.0         A         0.0           0         0         0         0.0         A         0.0           0         0         0         0.0         A         0.3 | 1999-2001         Wgt. Avg         Grade         1998-2000           0         Red         Purple         Wgt. Avg         Grade         Wgt. Avg         Grade           0         0         0         0.0         A         1.2         C           0         0         0         0.0         A         0.0         A           0         0         0         0.0         A         1.2         C           0         0         0         0.0         A         0.0         A           0         0         0         0.0         A         0.0         A           0         0         0         0.0         A         1.7         C           0         0         0.0         A         0.3         B | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1           Orange         Red         Purple         Wgt. Avg         Grade         1998-2000         Wgt. Avg         Mgt. Avg           0         0         0         0.0         A         1.2         C         1.2           0         0         0         0.0         A         0.0         A         0.0           0         0         0         0.0         A         0.0         A         0.0           0         0         0         0.0         A         0.0         A         0.0           0         0         0         0.0         A         1.7         C         1.7           0         0         0         0.0         A         0.3         B         0.3 | 1999-2001         Wgt. Avg         Grade         1998-2000         1997-1999           0         0         0         0.0         A         1.2         C         1.2         C           0         0         0         0.0         A         1.2         C         1.2         C           0         0         0         0.0         A         1.2         C         1.2         C           0         0         0         0.0         A         1.2         C         1.2         C           0         0         0         0.0         A         0.0         A         0.0         A           0         0         0         0.0         A         0.0         A         0.0         A           0         0         0.0         A         0.3         B         0.3         B | Ippg-2001         Wgt. Avg         Grade         Ipgg-2000         Ipgg7-1pgg         Ipgg7-1pg         Ipgg7-1pg |  |  |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

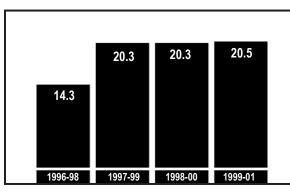
<sup>(9)</sup> **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

#### American Lung Association of Pennsylvania

3001 Old Gettysburg Road Camp Hill, PA 17011 (717) 541-5864 www.alapa.org

|            |           | AL-             | KISK           | Grou                | h2              |                       |           |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |
| Allegheny  | 1,281,666 | 233,154         | 228,416        | 15,549              | 72,746          | 48,307                | 18,852    |  |
| Armstrong  | 72,392    | 13,435          | 13,053         | 917                 | 4,047           | 2,721                 | 1,081     |  |
| Beaver     | 181,412   | 33,767          | 33,424         | 2,271               | 10,160          | 6,855                 | 2,746     |  |
| Berks      | 373,638   | 76,480          | 56,190         | 5,083               | 20,711          | 13,370                | 4,903     |  |
| Blair      | 129,144   | 23,909          | 22,456         | 1,619               | 7,267           | 4,834                 | 1,883     |  |
| Bucks      | 597,635   | 127,197         | 74,094         | 8,488               | 33,022          | 20,885                | 7,194     |  |
| Cambria    | 152,598   | 26,019          | 30,087         | 1,774               | 8,689           | 5,909                 | 2,413     |  |
| Centre     | 135,758   | 20,319          | 14,077         | 1,353               | 8,434           | 4,877                 | 1,388     |  |
| Chester    | 433,501   | 94,991          | 50,677         | 6,281               | 23,865          | 14,939                | 5,025     |  |
| Clearfield | 83,382    | 15,500          | 14,094         | 1,046               | 4,702           | 3,107                 | 1,194     |  |
| Dauphin    | 251,798   | 51,113          | 35,844         | 3,380               | 14,071          | 9,040                 | 3,255     |  |
| Delaware   | 550,864   | 113,230         | 85,669         | 7,567               | 30,362          | 19,668                | 7,302     |  |
| Erie       | 280,843   | 57,688          | 40,256         | 3,888               | 15,528          | 9,924                 | 3,563     |  |
| Franklin   | 129,313   | 25,666          | 20,751         | 1,717               | 7,188           | 4,721                 | 1,788     |  |
| Greene     | 40,672    | 7,335           | 6,193          | 497                 | 2,333           | 1,505                 | 549       |  |
| Lackawanna | 213,295   | 38,063          | 41,542         | 2,567               | 12,036          | 8,160                 | 3,319     |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

## PAGE 1 of 2 PENNSYLVANIA

Bucks County Air Quality Trends



Each bar marks the Weighted Averages for Bucks County for each period.

Г

#### **Changes for 2003 Report**

 Sufficient data are now available to grade Tioga County a D.

|            |        |            | H                | ligh     | Oz    | one                 | Day | ys                 |   |                                |   |
|------------|--------|------------|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------------------|---|
| County     | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-′<br>Wgt. Avg |   | 1996- <sup>-</sup><br>Wgt. Avg |   |
| Allegheny  | 39     | 2          | 0                | 14.0     | F     | 19.0                | F   | 23.3               | F | 19.2                           | F |
| Armstrong  | 33     | 3          | 0                | 12.5     | F     | 13.8                | F   | 13.2               | F | *                              | * |
| Beaver     | 25     | 2          | 0                | 9.3      | F     | 11.0                | F   | 12.0               | F | 11.0                           | F |
| Berks      | 24     | 4          | 0                | 10.0     | F     | 13.5                | F   | 15.8               | F | 11.5                           | F |
| Blair      | 11     | 0          | 0                | 3.7      | F     | 8.3                 | F   | 10.2               | F | 8.8                            | F |
| Bucks      | 41     | 11         | 2                | 20.5     | F     | 20.3                | F   | 20.3               | F | 14.3                           | F |
| Cambria    | 20     | 1          | 0                | 7.2      | F     | 10.0                | F   | 10.8               | F | 8.0                            | F |
| Centre     | 11     | 0          | 0                | 3.7      | F     | 4.7                 | F   | *                  | * | *                              | * |
| Chester    | *      | *          | *                | *        | *     | *                   | *   | *                  | * | *                              | * |
| Clearfield | 11     | 0          | 0                | 3.7      | F     | 6.7                 | F   | *                  | * | *                              | * |
| Dauphin    | 31     | 3          | 0                | 11.8     | F     | 15.2                | F   | 16.8               | F | 12.0                           | F |
| Delaware   | 34     | 4          | 0                | 13.3     | F     | 15.2                | F   | 19.0               | F | 14.5                           | F |
| Erie       | 18     | 1          | 0                | 6.5      | F     | 9.5                 | F   | 10.8               | F | 7.3                            | F |
| Franklin   | 38     | 1          | 0                | 13.2     | F     | 16.0                | F   | 16.7               | F | 10.8                           | F |
| Greene     | 36     | 3          | 0                | 13.5     | F     | 15.2                | F   | *                  | * | *                              | * |
| Lackawanna | a 19   | 1          | 0                | 6.8      | F     | 6.5                 | F   | 8.3                | F | 5.3                            | F |
|            |        |            |                  |          |       |                     |     |                    |   |                                |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

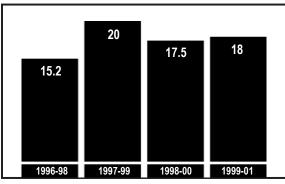
(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of Pennsylvania

3001 Old Gettysburg Road Camp Hill, PA 17011 (717) 541-5864 www.alapa.org

|              |            | At              | Risk           | Grou                | ps              |                       |           |
|--------------|------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County       | Total Pop  | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Lancaster    | 470,658    | 104,909         | 66,060         | 6,929               | 25,471          | 16,293                | 5,857     |
| Lawrence     | 94,643     | 17,840          | 18,223         | 1,210               | 5,244           | 3,571                 | 1,461     |
| Lehigh       | 312,090    | 62,217          | 49,434         | 4,130               | 17,393          | 11,336                | 4,244     |
| Luzerne      | 319,250    | 54,729          | 62,740         | 3,709               | 18,188          | 12,351                | 5,032     |
| Lycoming     | 120,044    | 22,825          | 19,251         | 1,547               | 6,742           | 4,404                 | 1,655     |
| Mercer       | 120,293    | 22,869          | 21,740         | 1,559               | 6,675           | 4,482                 | 1,783     |
| Monroe       | 138,687    | 30,710          | 17,036         | 2,053               | 7,550           | 4,768                 | 1,641     |
| Montgomery   | 750,097    | 151,505         | 111,797        | 10,017              | 41,860          | 27,038                | 9,891     |
| Northampton  | 267,066    | 51,431          | 42,030         | 3,443               | 15,020          | 9,773                 | 3,640     |
| Perry        | 43,602     | 9,085           | 5,345          | 615                 | 2,415           | 1,531                 | 528       |
| Philadelphia | 1,517,550  | 322,998         | 213,722        | 21,206              | 83,819          | 52,811                | 18,571    |
| Tioga        | 41,373     | 7,836           | 6,608          | 543                 | 2,310           | 1,518                 | 574       |
| Washington   | 202,897    | 37,115          | 36,323         | 2,488               | 11,462          | 7,702                 | 3,048     |
| Westmoreland | 369,993    | 66,502          | 67,781         | 4,492               | 20,921          | 14,148                | 5,661     |
| York         | 381,751    | 78,064          | 51,492         | 5,197               | 21,304          | 13,591                | 4,801     |
| TOTAL        | 10,057,905 | 1,998,501       | 1,556,405      | 133,134             | 561,538         | 364,137               | 134,842   |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Montgomery County Air Quality Trends



Each bar marks the Weighted Averages for Montgomery County for each period.

- - -

#### **Changes for 2003 Report**

 Sufficient data are now available to grade Tioga County a D.

|              |        |            |                  | ligh     | Oz    | one                 | Day | ys                |   |                   |   |
|--------------|--------|------------|------------------|----------|-------|---------------------|-----|-------------------|---|-------------------|---|
| County       | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-<br>Wgt. Avg |   | 1996-<br>Wgt. Avg |   |
| Lancaster    | 33     | 5          | 0                | 13.5     | F     | 17.5                | F   | 23.2              | F | 17.7              | F |
| Lawrence     | 5      | 1          | 0                | 2.2      | D     | 2.5                 | D   | 3.8               | F | 2.7               | D |
| Lehigh       | 26     | 7          | 0                | 12.2     | F     | 15.0                | F   | 17.2              | F | 12.2              | F |
| Luzerne      | 17     | 2          | 0                | 6.7      | F     | 6.0                 | F   | 8.3               | F | 6.5               | F |
| Lycoming     | 3      | 0          | 0                | 1.0      | С     | 1.3                 | С   | 1.0               | С | 1.3               | С |
| Mercer       | 23     | 2          | 0                | 8.7      | F     | 12.3                | F   | 14.5              | F | 14.8              | F |
| Monroe       | *      | *          | *                | *        | *     | *                   | *   | *                 | * | *                 | * |
| Montgomery   | 40     | 8          | 1                | 18.0     | F     | 17.5                | F   | 20.0              | F | 15.2              | F |
| Northampton  | 36     | 7          | 0                | 15.5     | F     | 13.3                | F   | 14.3              | F | 8.3               | F |
| Perry        | 25     | 0          | 0                | 8.3      | F     | 7.7                 | F   | 9.3               | F | 5.3               | F |
| Philadelphia | 29     | 5          | 0                | 12.2     | F     | 11.7                | F   | 15.8              | F | 15.5              | F |
| Tioga        | 7      | 0          | 0                | 2.3      | D     | *                   | *   | *                 | * | *                 | * |
| Washington   | 26     | 2          | 0                | 9.7      | F     | 19.3                | F   | 23.2              | F | 19.7              | F |
| Westmorelan  | d 20   | 1          | 1                | 7.8      | F     | 7.8                 | F   | 8.5               | F | 3.3               | F |
| York         | 22     | 2          | 0                | 8.3      | F     | 11.7                | F   | 13.8              | F | 11.3              | F |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of Rhode Island

298 West Exchange Street Providence, RI 02903-3700 (401) 421-6487 www.lungusa.org/rhodeisland

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Kent       | 167,090   | 32,363          | 25,222         | 2,146               | 12,033          | 6,114                 | 2,245     |  |  |  |  |  |  |
| Providence | 621,602   | 125,083         | 90,659         | 8,256               | 45,128          | 22,026                | 7,804     |  |  |  |  |  |  |
| Washington | 123,546   | 23,948          | 15,766         | 1,597               | 9,026           | 4,435                 | 1,519     |  |  |  |  |  |  |
| TOTAL      | 912,238   | 181,394         | 131,647        | 11,999              | 66,187          | 32,574                | 11,567    |  |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>RHODE ISLAND</u>

#### Washington County Air Quality Trends



Each bar marks the Weighted Averages for Washington County for each period.

#### **Changes for 2003 Report**

Providence County's grade dropped from a D to an F.

|            |        | High Ozone Days |                  |          |       |                     |   |                   |   |                    |   |  |  |
|------------|--------|-----------------|------------------|----------|-------|---------------------|---|-------------------|---|--------------------|---|--|--|
| County     | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |  |  |
| Kent       | 19     | 6               | 0                | 9.3      | F     | 5.5                 | F | 6.5               | F | 5.3                | F |  |  |
| Providence | 10     | 4               | 0                | 5.3      | F     | 2.2                 | D | 3.0               | D | 3.0                | D |  |  |
| Washington | 21     | 4               | 1                | 9.7      | F     | 6.0                 | F | 5.3               | F | *                  | * |  |  |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

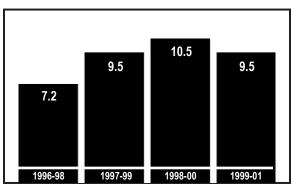


#### American Lung Association of South Carolina

1817 Gadsden StreetColumbia, SC 29201-2392(803) 779-5864www.lungusa.org/southcarolina

|              |           | At-             | Risk           | Grou                | ps              |                       |           |  |
|--------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|
| County       | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |
| Abbeville    | 26,167    | 5,487           | 3,842          | 366                 | 1,285           | 933                   | 343       |  |
| Aiken        | 142,552   | 30,894          | 18,287         | 2,065               | 6,884           | 4,947                 | 1,723     |  |
| Anderson     | 165,740   | 34,162          | 22,627         | 2,255               | 8,190           | 5,919                 | 2,106     |  |
| Barnwell     | 23,478    | 5,445           | 2,962          | 365                 | 1,104           | 794                   | 277       |  |
| Berkeley     | 142,651   | 33,126          | 11,261         | 2,208               | 6,629           | 4,593                 | 1,313     |  |
| Charleston   | 309,969   | 61,543          | 36,858         | 4,069               | 15,409          | 10,863                | 3,551     |  |
| Cherokee     | 52,537    | 11,431          | 6,517          | 750                 | 2,546           | 1,822                 | 623       |  |
| Chester      | 34,068    | 7,624           | 4,317          | 507                 | 1,629           | 1,175                 | 411       |  |
| Colleton     | 38,264    | 8,659           | 4,928          | 581                 | 1,817           | 1,321                 | 471       |  |
| Darlington   | 67,394    | 14,921          | 8,158          | 979                 | 3,244           | 2,337                 | 802       |  |
| Edgefield    | 24,595    | 4,933           | 2,669          | 328                 | 1,213           | 857                   | 273       |  |
| Greenville   | 379,616   | 78,392          | 44,573         | 5,164               | 18,657          | 13,232                | 4,364     |  |
| Oconee       | 66,215    | 12,581          | 10,311         | 837                 | 3,363           | 2,468                 | 929       |  |
| Pickens      | 110,757   | 20,746          | 12,616         | 1,365               | 5,599           | 3,906                 | 1,231     |  |
| Richland     | 320,677   | 64,134          | 31,475         | 4,292               | 15,754          | 10,900                | 3,259     |  |
| Spartanburg  | 253,791   | 52,916          | 31,740         | 3,478               | 12,470          | 8,923                 | 3,045     |  |
| Union        | 29,881    | 5,907           | 4,670          | 394                 | 1,499           | 1,093                 | 410       |  |
| Williamsburg | 37,217    | 8,695           | 4,856          | 590                 | 1,741           | 1,263                 | 453       |  |
| York         | 164,614   | 36,153          | 17,072         | 2,394               | 7,883           | 5,572                 | 1,772     |  |
| TOTAL        | 2,390,183 | 497,749         | 279,739        | 32,988              | 116,916         | 82,917                | 27,355    |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# SOUTH CAROLI

#### **Spartanburg County Air Quality Trends**



Each bar marks the Weighted Averages for Spartanburg County for each period.

#### **Changes for 2003 Report**

- The grades for Berkeley County and Charleston County improved from a D to a C.
- Colleton County's grade improved from a D to a B.
- The grades for Edgefield County, Oconee County, and York County improved from an F to a D.
- Union County's grade improved from an F to a C.
- Spartanburg County replaces Anderson County as having the worst record of high ozone days in the state.

|              |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-1   | 1998  |
|--------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County       | Orange | Red | Purple | Wgt. Avg | Grade |
| Abbeville    | 13     | 0   | 0      | 4.3      | F     | 8.3      | F     | 7.3      | F     | 4.7      | F     |
| Aiken        | 16     | 0   | 0      | 5.3      | F     | 12.0     | F     | 10.7     | F     | 11.0     | F     |
| Anderson     | 25     | 2   | 0      | 9.3      | F     | 14.0     | F     | 14.3     | F     | 10.2     | F     |
| Barnwell     | 14     | 0   | 0      | 4.7      | F     | 8.3      | F     | 7.3      | F     | 5.3      | F     |
| Berkeley     | 4      | 0   | 0      | 1.3      | С     | 2.3      | D     | 1.7      | С     | 1.3      | С     |
| Charleston   | 6      | 0   | 0      | 2.0      | С     | 2.3      | D     | 2.3      | D     | 2.0      | С     |
| Cherokee     | 14     | 0   | 0      | 4.7      | F     | 9.5      | F     | 9.8      | F     | 7.5      | F     |
| Chester      | 17     | 1   | 0      | 6.2      | F     | 11.0     | F     | 12.3     | F     | 7.8      | F     |
| Colleton     | 2      | 0   | 0      | 0.7      | В     | 2.3      | D     | 2.0      | С     | *        | *     |
| Darlington   | 16     | 0   | 0      | 5.3      | F     | 7.7      | F     | 7.7      | F     | 4.3      | F     |
| Edgefield    | 7      | 0   | 0      | 2.3      | D     | 7.2      | F     | 6.8      | F     | 5.2      | F     |
| Greenville   | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Oconee       | 8      | 0   | 0      | 2.7      | D     | 5.3      | F     | 4.7      | F     | 3.0      | D     |
| Pickens      | 19     | 0   | 0      | 6.3      | F     | 6.0      | F     | 6.0      | F     | 4.0      | F     |
| Richland     | 27     | 0   | 0      | 9.0      | F     | 12.3     | F     | 11.7     | F     | 8.7      | F     |
| Spartanburg  | 27     | 1   | 0      | 9.5      | F     | 10.5     | F     | 9.5      | F     | 7.2      | F     |
| Union        | 4      | 1   | 0      | 1.8      | С     | 4.2      | F     | 4.2      | F     | 3.0      | D     |
| Williamsburg | 1      | 0   | 0      | 0.3      | В     | 0.3      | В     | 0.3      | В     | 0.0      | А     |
| York         | 7      | 0   | 0      | 2.3      | D     | 4.3      | F     | 5.0      | F     | 3.0      | D     |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of South Dakota

1212 West Elkhorn Street, Suite 1 Sioux Falls, SD 57104-0233 (605) 336-7222 www.lungusa.org/southdakota

|            |           | At-             | Risk           | Grou                | ps              |                       |           |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Minnehaha  | 148,281   | 32,288          | 16,313         | 2,145               | 5,753           | 4,971                 | 1,574     |
| Pennington | 88,565    | 19,450          | 10,451         | 1,303               | 3,431           | 3,008                 | 1,002     |
| TOTAL      | 236,846   | 51,738          | 26,764         | 3,449               | 9,183           | 7,979                 | 2,577     |

#### Notes

156

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>SOUTH DAKOTA</u>

#### Minnehaha County Air Quality Trends



#### **Changes for 2003 Report**

 Sufficient data are now available to grade Minnehaha County an A.

|            |        |   | ŀ                | ligh     | Oz    | one                 | Day | ys                 |   |                    |   |
|------------|--------|---|------------------|----------|-------|---------------------|-----|--------------------|---|--------------------|---|
| County     | Orange |   | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-1<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |
| Minnehaha  | 0      | 0 | 0                | 0.0      | А     | *                   | *   | *                  | * | *                  | * |
| Pennington | *      | * | *                | *        | *     | *                   | *   | *                  | * | *                  | * |
|            |        |   |                  |          |       |                     |     |                    |   |                    |   |

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

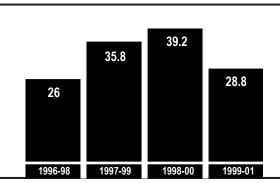
<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



#### American Lung Association of Tennessee

One Vantage Way, Suite C-250 Nashville, TN 37228 (615) 329-1151 www.lungtn.org

|            |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Anderson   | 71,330    | 13,579          | 11,824         | 914                 | 3,846           | 2,661                 | 1,027     |  |  |  |  |  |  |
| Blount     | 105,823   | 20,021          | 14,914         | 1,334               | 5,635           | 3,883                 | 1,391     |  |  |  |  |  |  |
| Davidson   | 569,891   | 106,769         | 63,444         | 6,993               | 29,539          | 20,056                | 6,244     |  |  |  |  |  |  |
| Dickson    | 43,156    | 9,572           | 5,069          | 635                 | 2,150           | 1,474                 | 494       |  |  |  |  |  |  |
| Dyer       | 37,279    | 7,939           | 5,001          | 531                 | 1,902           | 1,307                 | 463       |  |  |  |  |  |  |
| Hamblen    | 58,128    | 11,255          | 7,719          | 748                 | 3,058           | 2,104                 | 735       |  |  |  |  |  |  |
| Hamilton   | 307,896   | 59,422          | 42,609         | 3,951               | 16,242          | 11,165                | 3,951     |  |  |  |  |  |  |
| Haywood    | 19,797    | 4,491           | 2,735          | 298                 | 991             | 680                   | 244       |  |  |  |  |  |  |
| Jefferson  | 44,294    | 8,406           | 5,703          | 561                 | 2,331           | 1,600                 | 549       |  |  |  |  |  |  |
| Knox       | 382,032   | 71,201          | 48,415         | 4,706               | 20,117          | 13,754                | 4,606     |  |  |  |  |  |  |
| Lawrence   | 39,926    | 8,713           | 5,737          | 578                 | 2,037           | 1,401                 | 511       |  |  |  |  |  |  |
| Meigs      | 11,086    | 2,294           | 1,280          | 154                 | 567             | 391                   | 133       |  |  |  |  |  |  |
| Montgomery | 134,768   | 32,757          | 10,499         | 2,120               | 6,259           | 4,207                 | 1,143     |  |  |  |  |  |  |
| Obion      | 32,450    | 6,262           | 4,928          | 421                 | 1,729           | 1,193                 | 444       |  |  |  |  |  |  |
| Putnam     | 62,315    | 11,477          | 8,236          | 768                 | 3,282           | 2,240                 | 757       |  |  |  |  |  |  |
| Roane      | 51,910    | 9,504           | 8,351          | 641                 | 2,830           | 1,962                 | 751       |  |  |  |  |  |  |
| Rutherford | 182,023   | 40,568          | 13,622         | 2,661               | 8,710           | 5,875                 | 1,591     |  |  |  |  |  |  |
| Sevier     | 71,170    | 13,568          | 8,995          | 905                 | 3,756           | 2,588                 | 893       |  |  |  |  |  |  |
| Shelby     | 897,472   | 212,781         | 89,581         | 14,006              | 43,059          | 29,336                | 9,171     |  |  |  |  |  |  |
| Sullivan   | 153,048   | 27,662          | 24,326         | 1,848               | 8,361           | 5,784                 | 2,183     |  |  |  |  |  |  |
| Sumner     | 130,449   | 28,119          | 13,916         | 1,899               | 6,504           | 4,463                 | 1,454     |  |  |  |  |  |  |
| Williamson | 126,638   | 31,035          | 9,811          | 2,065               | 5,970           | 4,097                 | 1,230     |  |  |  |  |  |  |
| Wilson     | 88,809    | 19,432          | 8,580          | 1,289               | 4,407           | 3,022                 | 952       |  |  |  |  |  |  |
| TOTAL      | 3,621,690 | 756,827         | 415,295        | 50,024              | 183,283         | 125,245               | 40,917    |  |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### **Sevier County Air Quality Trends**



Each bar marks the Weighted Averages for Sevier County for each period.

Г

#### **Changes for 2003 Report**

- Monitoring data are now available for Dyer County, Hamblen County, and Obion County.
- Monitoring data are no longer available for Coffee County.

|            |        | High Ozone Days |        |          |       |          |       |                    |       |                    |       |  |
|------------|--------|-----------------|--------|----------|-------|----------|-------|--------------------|-------|--------------------|-------|--|
|            |        | 199             | 9-2001 |          |       | 1998-20  | 000   | 1997- <sup>-</sup> | 1999  | 1996- <sup>-</sup> | 1998  |  |
| County     | Orange | Red             | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade | Wgt. Avg           | Grade |  |
| Anderson   | 30     | 0               | 0      | 10.0     | F     | 12.0     | F     | 9.7                | F     | 5.3                | F     |  |
| Blount     | 56     | 5               | 0      | 21.2     | F     | 32.3     | F     | 35.3               | F     | 21.8               | F     |  |
| Davidson   | 24     | 0               | 0      | 8.0      | F     | 11.8     | F     | 13.5               | F     | 9.7                | F     |  |
| Dickson    | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Dyer       | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Hamblen    | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Hamilton   | 25     | 5               | 0      | 10.8     | F     | 19.7     | F     | 18.2               | F     | 15.2               | F     |  |
| Haywood    | 28     | 0               | 0      | 9.3      | F     | 12.7     | F     | 10.7               | F     | 6.0                | F     |  |
| Jefferson  | 36     | 3               | 0      | 13.5     | F     | 20.8     | F     | 23.3               | F     | 21.8               | F     |  |
| Knox       | 48     | 3               | 0      | 17.5     | F     | 30.7     | F     | 33.5               | F     | 27.7               | F     |  |
| Lawrence   | 27     | 2               | 0      | 10.0     | F     | 11.7     | F     | 11.3               | F     | *                  | *     |  |
| Meigs      | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Montgomery | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Obion      | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Putnam     | 22     | 1               | 0      | 7.8      | F     | 12.2     | F     | 9.8                | F     | *                  | *     |  |
| Roane      | *      | *               | *      | *        | *     | *        | *     | *                  | *     | *                  | *     |  |
| Rutherford | 16     | 1               | 0      | 5.8      | F     | 7.2      | F     | 6.8                | F     | 3.7                | F     |  |
| Sevier     | 79     | 5               | 0      | 28.8     | F     | 39.2     | F     | 35.8               | F     | 26.0               | F     |  |
| Shelby     | 44     | 5               | 0      | 17.2     | F     | 23.0     | F     | 20.7               | F     | 17.2               | F     |  |
| Sullivan   | 20     | 3               | 0      | 8.2      | F     | 13.2     | F     | 11.0               | F     | 9.7                | F     |  |
| Sumner     | 44     | 3               | 0      | 16.2     | F     | 23.5     | F     | 25.7               | F     | 21.8               | F     |  |
| Williamson | 23     | 0               | 0      | 7.7      | F     | 12.0     | F     | 13.3               | F     | 10.7               | F     |  |
| Wilson     | 20     | 1               | 0      | 7.2      | F     | 8.5      | F     | 7.5                | F     | 5.3                | F     |  |

### \_ \_ \_

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

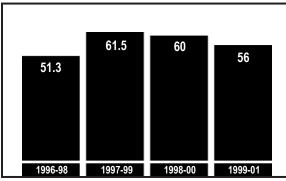
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of Texas

P.O. Box 26460 Austin, TX 78755-0460 (512) 467-6753 www.texaslung.org

|           |           | At-             | Risk           | Grou                | ps              |                       |           |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Bexar     | 1,392,931 | 331,205         | 144,398        | 21,925              | 60,917          | 45,271                | 14,248    |
| Brazoria  | 241,767   | 57,333          | 21,330         | 3,821               | 10,563          | 7,815                 | 2,348     |
| Brewster  | 8,866     | 1,568           | 1,297          | 109                 | 422             | 326                   | 117       |
| Cameron   | 335,227   | 94,820          | 37,375         | 6,265               | 13,560          | 10,192                | 3,400     |
| Collin    | 491,675   | 121,201         | 25,852         | 7,814               | 21,448          | 15,266                | 3,819     |
| Dallas    | 2,218,899 | 522,739         | 178,872        | 34,232              | 97,832          | 70,616                | 19,773    |
| Denton    | 432,976   | 101,847         | 21,703         | 6,642               | 19,145          | 13,425                | 3,202     |
| Ellis     | 111,360   | 27,663          | 10,286         | 1,861               | 4,754           | 3,546                 | 1,099     |
| El Paso   | 679,622   | 181,350         | 66,073         | 12,023              | 28,253          | 20,901                | 6,503     |
| Galveston | 250,158   | 55,443          | 27,765         | 3,698               | 11,211          | 8,504                 | 2,800     |
| Gregg     | 111,379   | 24,545          | 14,757         | 1,647               | 4,986           | 3,818                 | 1,335     |
| Harris    | 3,400,578 | 828,962         | 252,895        | 54,446              | 147,799         | 106,958               | 29,680    |
| Harrison  | 62,110    | 13,460          | 8,134          | 922                 | 2,778           | 2,142                 | 755       |
| Hidalgo   | 569,463   | 169,732         | 55,274         | 11,115              | 22,512          | 16,573                | 5,177     |
| Hood      | 41,100    | 7,921           | 7,349          | 536                 | 1,919           | 1,552                 | 626       |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).





Each bar marks the Weighted Averages for Harris County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Harrison County.
- Cameron County's grade improved from a B to an A.
- El Paso County's grade improved from an F to a D.
- Hidalgo County's grade dropped from an A to a B.
- Victoria County's grade improved from a D to a C.
- Sufficient data are now available to grade Montgomery County an F.

|           |        | 199 | 9-2001 |          |       | 1998-20  | 00    | 1997-1   | 999   | 1996-1   | 998   |
|-----------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County    | Orange | Red | Purple | Wgt. Avg | Grade |
| Bexar     | 14     | 0   | 0      | 4.7      | F     | 7.2      | F     | 7.2      | F     | 4.8      | F     |
| Brazoria  | 14     | 5   | 0      | 7.2      | F     | 6.5      | F     | 7.0      | F     | 4.3      | F     |
| Brewster  | 0      | 0   | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0      | А     |
| Cameron   | 0      | 0   | 0      | 0.0      | А     | 0.3      | В     | 0.3      | В     | 0.3      | В     |
| Collin    | 46     | 3   | 1      | 17.5     | F     | 20.8     | F     | 20.8     | F     | 17.7     | F     |
| Dallas    | 37     | 7   | 0      | 15.8     | F     | 21.7     | F     | 20.7     | F     | 15.7     | F     |
| Denton    | 48     | 8   | 1      | 20.7     | F     | 24.3     | F     | 27.2     | F     | 22.3     | F     |
| Ellis     | 35     | 2   | 0      | 12.7     | F     | 16.7     | F     | 11.5     | F     | 5.0      | F     |
| El Paso   | 7      | 0   | 0      | 2.3      | D     | 3.5      | F     | 2.8      | D     | 3.2      | D     |
| Galveston | 27     | 5   | 4      | 14.2     | F     | 19.2     | F     | 23.2     | F     | 13.8     | F     |
| Gregg     | 33     | 4   | 0      | 13.0     | F     | 18.5     | F     | 15.8     | F     | 9.2      | F     |
| Harris    | 80     | 44  | 11     | 56.0     | F     | 60.0     | F     | 61.5     | F     | 51.3     | F     |
| Harrison  | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Hidalgo   | 1      | 0   | 0      | 0.3      | В     | 0.0      | А     | 0.0      | А     | 0.0      | А     |
| Hood      | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |

High Orana

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

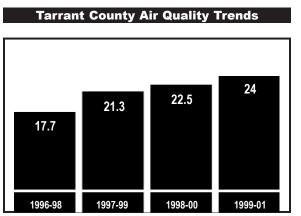
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of Texas

P.O. Box 26460 Austin, TX 78755-0460 (512) 467-6753 www.texaslung.org

|            |            | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |
|------------|------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|
| County     | Total Pop  | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |
| Jefferson  | 252,051    | 53,588          | 34,269         | 3,612               | 11,409          | 8,719                 | 3,054     |  |  |  |  |  |
| Johnson    | 126,811    | 30,043          | 12,645         | 2,019               | 5,524           | 4,151                 | 1,320     |  |  |  |  |  |
| Kaufman    | 71,313     | 17,050          | 7,586          | 1,152               | 3,088           | 2,340                 | 768       |  |  |  |  |  |
| Marion     | 10,941     | 2,007           | 2,101          | 135                 | 519             | 426                   | 178       |  |  |  |  |  |
| Montgomery | 293,768    | 72,060          | 25,548         | 4,796               | 12,672          | 9,478                 | 2,905     |  |  |  |  |  |
| Nueces     | 313,645    | 73,535          | 35,005         | 4,928               | 13,727          | 10,344                | 3,394     |  |  |  |  |  |
| Orange     | 84,966     | 18,856          | 10,776         | 1,282               | 3,778           | 2,910                 | 1,017     |  |  |  |  |  |
| Parker     | 88,495     | 19,965          | 9,318          | 1,347               | 3,925           | 2,986                 | 978       |  |  |  |  |  |
| Rockwall   | 43,080     | 10,737          | 3,686          | 716                 | 1,844           | 1,381                 | 424       |  |  |  |  |  |
| Smith      | 174,706    | 38,414          | 24,602         | 2,571               | 7,835           | 6,057                 | 2,183     |  |  |  |  |  |
| Tarrant    | 1,446,219  | 342,240         | 120,585        | 22,478              | 63,595          | 46,384                | 13,374    |  |  |  |  |  |
| Travis     | 812,280    | 163,203         | 54,824         | 10,670              | 37,873          | 26,634                | 6,693     |  |  |  |  |  |
| Victoria   | 84,088     | 20,164          | 10,059         | 1,355               | 3,643           | 2,779                 | 949       |  |  |  |  |  |
| Webb       | 193,117    | 59,285          | 14,656         | 3,863               | 7,534           | 5,422                 | 1,530     |  |  |  |  |  |
| TOTAL      | 14,343,591 | 3,460,936       | 1,239,020      | 227,983             | 625,066         | 456,915               | 133,650   |  |  |  |  |  |


#### Notes

162

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).



Each bar marks the Weighted Averages for Tarrant County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Harrison County.
- Cameron County's grade improved from a B to an A.
- El Paso County's grade improved from an F to a D.
- Hidalgo County's grade dropped from an A to a B.
- Victoria County's grade improved from a D to a C.
- Sufficient data are now available to grade Montgomery County with an F.

|            |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-1   | 998   |
|------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County     | Orange | Red | Purple | Wgt. Avg | Grade |
| Jefferson  | 18     | 2   | 0      | 7.0      | F     | 9.7      | F     | 8.7      | F     | 9.7      | F     |
| Johnson    | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Kaufman    | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Marion     | 19     | 1   | 0      | 6.8      | F     | 6.8      | F     | *        | *     | *        | *     |
| Montgomery | 26     | 2   | 0      | 9.7      | F     | *        | *     | *        | *     | *        | *     |
| Nueces     | 10     | 0   | 0      | 3.3      | F     | 4.0      | F     | 3.3      | F     | 2.7      | D     |
| Orange     | 5      | 0   | 0      | 1.7      | С     | 2.0      | С     | 3.0      | D     | 3.7      | F     |
| Parker     | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Rockwall   | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Smith      | 28     | 1   | 0      | 9.8      | F     | 12.2     | F     | 12.2     | F     | 6.3      | F     |
| Tarrant    | 57     | 6   | 3      | 24.0     | F     | 22.5     | F     | 21.3     | F     | 17.7     | F     |
| Travis     | 31     | 0   | 0      | 10.3     | F     | 12.0     | F     | 10.3     | F     | 4.0      | F     |
| Victoria   | 5      | 0   | 0      | 1.7      | С     | 2.3      | D     | 2.0      | С     | 0.7      | В     |
| Webb       | 0      | 0   | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0      | А     |

High Ores

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

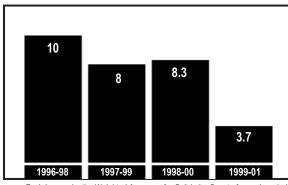
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



#### American Lung Association of Utah

1930 South 1100 East
Salt Lake City, UT 84106-2317
(801) 484-4456
www.lungusa.org/utah

|           | At-Risk Groups                                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-----------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Total Pop | 14 and<br>Under                                                        | 65 and<br>Over                                                                                                                                                                                                                                                         | Pediatric<br>Asthma                                                                                                                                                    | Adult<br>Asthma                                                                                                                                                                                                           | Chronic<br>Bronchitis                                                                                                                                                                                                                                                        | Emphysema                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 42,745    | 12,558                                                                 | 4,443                                                                                                                                                                                                                                                                  | 853                                                                                                                                                                    | 1,908                                                                                                                                                                                                                     | 1,254                                                                                                                                                                                                                                                                        | 414                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 91,391    | 23,763                                                                 | 6,539                                                                                                                                                                                                                                                                  | 1,581                                                                                                                                                                  | 4,384                                                                                                                                                                                                                     | 2,679                                                                                                                                                                                                                                                                        | 686                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 238,994   | 68,962                                                                 | 17,540                                                                                                                                                                                                                                                                 | 4,643                                                                                                                                                                  | 10,931                                                                                                                                                                                                                    | 6,854                                                                                                                                                                                                                                                                        | 1,931                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 898,387   | 226,824                                                                | 72,680                                                                                                                                                                                                                                                                 | 15,129                                                                                                                                                                 | 43,976                                                                                                                                                                                                                    | 27,618                                                                                                                                                                                                                                                                       | 7,829                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 14,413    | 4,730                                                                  | 1,214                                                                                                                                                                                                                                                                  | 313                                                                                                                                                                    | 615                                                                                                                                                                                                                       | 396                                                                                                                                                                                                                                                                          | 123                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 368,536   | 105,639                                                                | 23,503                                                                                                                                                                                                                                                                 | 6,939                                                                                                                                                                  | 16,980                                                                                                                                                                                                                    | 10,289                                                                                                                                                                                                                                                                       | 2,541                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 196,533   | 50,445                                                                 | 20,280                                                                                                                                                                                                                                                                 | 3,369                                                                                                                                                                  | 9,476                                                                                                                                                                                                                     | 6,138                                                                                                                                                                                                                                                                        | 1,936                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1,850,999 | 492,921                                                                | 146,199                                                                                                                                                                                                                                                                | 32,829                                                                                                                                                                 | 88,269                                                                                                                                                                                                                    | 55,229                                                                                                                                                                                                                                                                       | 15,460                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|           | 42,745<br>91,391<br>238,994<br>898,387<br>14,413<br>368,536<br>196,533 | Total Pop         14 and<br>Under           42,745         12,558           91,391         23,763           238,994         68,962           898,387         226,824           14,413         4,730           368,536         105,639           196,533         50,445 | Total Pop14 and<br>Under65 and<br>Over42,74512,5584,44391,39123,7636,539238,99468,96217,540898,387226,82472,68014,4134,7301,214368,536105,63923,503196,53350,44520,280 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>Asthma42,74512,5584,44385391,39123,7636,5391,581238,99468,96217,5404,643898,387226,82472,68015,12914,4134,7301,214313368,536105,63923,5036,939196,53350,44520,2803,369 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br>Asthma42,74512,5584,4438531,90891,39123,7636,5391,5814,384238,99468,96217,5404,64310,931898,387226,82472,68015,12943,97614,4134,7301,214313615368,536105,63923,5036,93916,980196,53350,44520,2803,3699,476 | Total Pop14 and<br>Under65 and<br>OverPediatric<br>AsthmaAdult<br>AsthmaChronic<br>Bronchitis42,74512,5584,4438531,9081,25491,39123,7636,5391,5814,3842,679238,99468,96217,5404,64310,9316,854898,387226,82472,68015,12943,97627,61814,4134,7301,214313615396368,536105,63923,5036,93916,98010,289196,53350,44520,2803,3699,4766,138 |  |  |  |  |  |


#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Salt Lake County Air Quality Trends



Each bar marks the Weighted Averages for Salt Lake County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Box Elder County.
- The grades for Davis County and Utah County improved from an F to a C.

|           |        | High Ozone Days |                  |          |       |                     |   |                    |   |                    |   |  |
|-----------|--------|-----------------|------------------|----------|-------|---------------------|---|--------------------|---|--------------------|---|--|
| County    | Orange | 199<br>Red      | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-⁄<br>Wgt. Avg |   | 1996-′<br>Wgt. Avg |   |  |
| Box Elder | *      | *               | *                | *        | *     | *                   | * | *                  | * | *                  | * |  |
| Cache     | 0      | 0               | 0                | 0.0      | А     | 0.0                 | А | 0.0                | А | 0.0                | А |  |
| Davis     | 4      | 1               | 0                | 1.8      | С     | 4.0                 | F | 3.7                | F | 4.3                | F |  |
| Salt Lake | 8      | 2               | 0                | 3.7      | F     | 8.3                 | F | 8.0                | F | 10.0               | F |  |
| San Juan  | 0      | 0               | 0                | 0.0      | А     | 0.0                 | А | 0.0                | A | 0.0                | А |  |
| Utah      | 3      | 0               | 0                | 1.0      | С     | 3.7                 | F | 3.7                | F | 3.0                | D |  |
| Weber     | 3      | 0               | 0                | 1.0      | С     | 2.0                 | С | 2.3                | D | 2.3                | D |  |
|           |        |                 |                  |          |       |                     |   |                    |   |                    |   |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

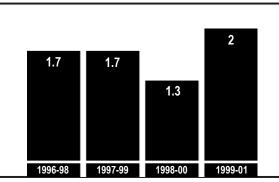


#### American Lung Association of Vermont

30 Farrell Street South Burlington,VT 05403-6196 (802) 863-6817 www.lungusa.org/vermont

| County     | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
|------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| Bennington | 36,994    | 7,113           | 6,167          | 484                 | 2,456           | 1,376                 | 535       |
| Chittenden | 146,571   | 28,692          | 13,780         | 1,909               | 10,114          | 5,036                 | 1,493     |
| Total      | 183,565   | 35,805          | 19,947         | 2,393               | 12,571          | 6,412                 | 2,028     |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Changes for 2003 Report

■ There were no changes from the 2002 report.



**Bennington County Air Quality Trends** 

Each bar marks the Weighted Averages for Bennington County for each period.

#### **High Ozone Days** 1999-2001 1998-2000 1997-1999 1996-1998 County Wgt. Avg Grade Orange Red Purple Wgt. Avg Grade Wgt. Avg Grade Wgt. Avg Grade 0 2.0 С С 1.7 С 1.7 С Bennington 6 0 1.3 Chittenden 0 0 В В 0.3 В 0.3 В 1 0.3 0.3

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

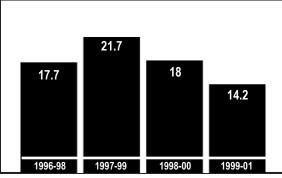
#### American Lung Association of Virgnina

92 Ri (8 w

9221 Forest Hill Avenue Richmond, VA 23235 (804) 267-1900 www.lungusa.org/virginia

|                 |           | At-             | Risk           | Grou                | ps              |                       |           |  |
|-----------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|
| County          | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |
| Arlington       | 189,453   | 26,773          | 17,762         | 1,728               | 10,364          | 6,965                 | 1,942     |  |
| Caroline        | 22,121    | 4,542           | 2,857          | 303                 | 1,076           | 787                   | 275       |  |
| Charles City    | 6,926     | 1,237           | 874            | 85                  | 347             | 257                   | 90        |  |
| Chesterfield    | 259,903   | 60,250          | 21,007         | 4,061               | 12,080          | 8,545                 | 2,572     |  |
| Fairfax         | 969,749   | 206,401         | 76,818         | 13,618              | 46,928          | 32,910                | 9,654     |  |
| Fauquier        | 55,139    | 12,201          | 5,789          | 818                 | 2,606           | 1,892                 | 625       |  |
| Frederick       | 59,209    | 13,008          | 6,303          | 863                 | 2,826           | 2,023                 | 658       |  |
| Hanover         | 86,320    | 19,229          | 9,159          | 1,292               | 4,073           | 2,937                 | 966       |  |
| Henrico         | 262,300   | 54,652          | 32,601         | 3,578               | 12,840          | 9,158                 | 3,079     |  |
| Loudoun         | 169,599   | 44,268          | 9,538          | 2,796               | 7,786           | 5,196                 | 1,325     |  |
| Madison         | 12,520    | 2,440           | 1,883          | 167                 | 612             | 460                   | 172       |  |
| Page            | 23,177    | 4,364           | 3,644          | 294                 | 1,153           | 860                   | 323       |  |
| Prince William  | 280,813   | 72,050          | 13,473         | 4,725               | 12,765          | 8,518                 | 2,110     |  |
| Roanoke         | 85,778    | 16,045          | 13,645         | 1,078               | 4,266           | 3,225                 | 1,232     |  |
| Rockbridge      | 20,808    | 3,741           | 3,259          | 256                 | 1,042           | 784                   | 296       |  |
| Stafford        | 92,446    | 24,363          | 5,474          | 1,613               | 4,125           | 2,803                 | 749       |  |
| Wythe           | 27,599    | 4,917           | 4,363          | 333                 | 1,392           | 1,038                 | 389       |  |
| Alexandria city | 128,283   | 18,637          | 11,605         | 1,191               | 6,991           | 4,695                 | 1,297     |  |
| Hampton city    | 146,437   | 29,624          | 15,143         | 1,963               | 7,244           | 4,993                 | 1,522     |  |
| Suffolk city    | 63,677    | 14,917          | 7,268          | 981                 | 2,980           | 2,136                 | 713       |  |
| TOTAL           | 2,962,257 | 633,659         | 262,465        | 41,743              | 143,497         | 100,181               | 29,989    |  |

#### Notes


168

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

#### Fairfax County Air Quality Trends



Each bar marks the Weighted Averages for Fairfax County for each period.

#### **Changes for 2003 Report**

- Wythe County's grade improved from an F to a D.
- Sufficient data are now available to grade Page County with an F and Rockbridge County with a C.

|                |        |     |        | iign     | UZ    | one      | vay   | ys       |       |                    |       |
|----------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|--------------------|-------|
|                |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996- <sup>-</sup> | 1998  |
| County         | Orange | Red | Purple | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg | Grade | Wgt. Avg           | Grade |
| Arlington      | 35     | 1   | 0      | 12.2     | F     | 11.5     | F     | 16.7     | F     | 10.2               | F     |
| Caroline       | 19     | 0   | 0      | 6.3      | F     | 8.3      | F     | 10.0     | F     | 6.0                | F     |
| Charles City   | 19     | 1   | 1      | 7.5      | F     | 11.5     | F     | 16.3     | F     | 11.8               | F     |
| Chesterfield   | 19     | 0   | 0      | 6.3      | F     | 6.5      | F     | 8.5      | F     | 5.5                | F     |
| Fairfax        | 38     | 3   | 0      | 14.2     | F     | 18.0     | F     | 21.7     | F     | 17.7               | F     |
| Fauquier       | 11     | 0   | 0      | 3.7      | F     | 7.3      | F     | 8.0      | F     | 5.7                | F     |
| Frederick      | 12     | 0   | 0      | 4.0      | F     | 5.8      | F     | 6.5      | F     | 5.2                | F     |
| Hanover        | *      | *   | *      | *        | *     | *        | *     | 19.3     | F     | 12.8               | F     |
| Henrico        | 26     | 2   | 0      | 9.7      | F     | 10.8     | F     | 12.8     | F     | 8.0                | F     |
| Loudoun        | 16     | 1   | 0      | 5.8      | F     | 8.7      | F     | *        | *     | *                  | *     |
| Madison        | 24     | 0   | 0      | 8.0      | F     | 13.3     | F     | 14.7     | F     | 10.0               | F     |
| Page           | 12     | 0   | 0      | 4.0      | F     | *        | *     | *        | *     | *                  | *     |
| Prince Willian | n 17   | 0   | 0      | 5.7      | F     | 8.3      | F     | 9.0      | F     | 6.7                | F     |
| Roanoke        | 13     | 0   | 0      | 4.3      | F     | 7.2      | F     | 7.2      | F     | 5.2                | F     |
| Rockbridge     | 3      | 0   | 0      | 1.0      | С     | *        | *     | *        | *     | *                  | *     |
| Stafford       | 21     | 2   | 0      | 8.0      | F     | 9.7      | F     | 12.0     | F     | 7.7                | F     |
| Wythe          | 7      | 0   | 0      | 2.3      | D     | 4.0      | F     | 3.7      | F     | 2.3                | D     |
| Alexandria Ci  | ty 18  | 0   | 0      | 6.0      | F     | 7.3      | F     | 8.7      | F     | 5.7                | F     |
| Hampton City   | 16     | 2   | 0      | 6.3      | F     | 8.3      | F     | 11.3     | F     | 7.7                | F     |
| Suffolk City   | 16     | 2   | 0      | 6.3      | F     | 8.8      | F     | 12.5     | F     | 9.3                | F     |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of Washington

2625 Third Avenue Seattle, WA, 98121-1213 (206) 441-5100 www.alaw.org

|           |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |  |  |  |
|-----------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|--|--|
| County    | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |  |  |
| Clallam   | 64,525    | 11,359          | 13,727         | 784                 | 3,808           | 2,542                 | 1,099     |  |  |  |  |  |  |
| Clark     | 345,238   | 83,161          | 32,808         | 5,474               | 18,727          | 11,287                | 3,530     |  |  |  |  |  |  |
| Cowlitz   | 92,948    | 20,604          | 12,368         | 1,377               | 5,166           | 3,233                 | 1,156     |  |  |  |  |  |  |
| King      | 1,737,034 | 326,475         | 181,772        | 21,603              | 102,255         | 61,285                | 19,004    |  |  |  |  |  |  |
| Klickitat | 19,161    | 4,200           | 2,644          | 287                 | 1,063           | 678                   | 252       |  |  |  |  |  |  |
| Lewis     | 68,600    | 14,594          | 10,667         | 1,007               | 3,821           | 2,443                 | 936       |  |  |  |  |  |  |
| Pierce    | 700,820   | 158,739         | 71,620         | 10,538              | 38,735          | 23,279                | 7,317     |  |  |  |  |  |  |
| Skagit    | 102,979   | 22,172          | 15,034         | 1,498               | 5,754           | 3,628                 | 1,340     |  |  |  |  |  |  |
| Spokane   | 417,939   | 88,388          | 51,949         | 5,945               | 23,544          | 14,450                | 4,909     |  |  |  |  |  |  |
| Thurston  | 207,355   | 42,582          | 23,629         | 2,905               | 11,773          | 7,226                 | 2,405     |  |  |  |  |  |  |
| Whatcom   | 166,814   | 33,229          | 19,400         | 2,226               | 9,603           | 5,828                 | 1,902     |  |  |  |  |  |  |
| TOTAL     | 3,923,413 | 805,503         | 435,618        | 53,642              | 224,249         | 135,879               | 43,851    |  |  |  |  |  |  |

#### Notes

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

### WASHINGTON

### **King County Air Quality Trends** 4 2.3 2.3 1996-98 1997-99 1998-00 1999-01 . .

Each bar marks the Weighted Averages for King County for each period.

#### **Changes for 2003 Report**

- King County's grade improved from a D to a C.
- Pierce County's grade improved from a C to an B.
- Thurston County's grade improved from a B to an A.
- Sufficient data are no longer available to grade Lewis County.

|           |        | High Ozone Days |        |          |       |          |       |          |       |          |       |  |
|-----------|--------|-----------------|--------|----------|-------|----------|-------|----------|-------|----------|-------|--|
|           |        | 199             | 9-2001 |          |       | 1998-20  |       | 1997-    |       | 1996-    | 1998  |  |
| County    | Orange | Red             | Purple | Wgt. Avg | Grade |  |
| Clallam   | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0      | А     |  |
| Clark     | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 1.0      | С     |  |
| Cowlitz   | *      | *               | *      | *        | *     | *        | *     | *        | *     | *        | *     |  |
| King      | 3      | 0               | 0      | 1.0      | С     | 2.3      | D     | 2.3      | D     | 4.0      | F     |  |
| Klickitat | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | *        | *     | *        | *     |  |
| Lewis     | *      | *               | *      | *        | *     | 0.0      | А     | *        | *     | *        | *     |  |
| Pierce    | 1      | 0               | 0      | 0.3      | В     | 1.8      | С     | 1.8      | С     | 1.8      | С     |  |
| Skagit    | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0      | А     |  |
| Spokane   | 0      | 0               | 0      | 0.0      | А     | 0.0      | А     | 0.0      | А     | 0.0      | А     |  |
| Thurston  | 0      | 0               | 0      | 0.0      | А     | 0.3      | В     | *        | *     | *        | *     |  |
| Whatcom   | 0      | 0               | 0      | 0.0      | А     | 0.0      | A     | 0.0      | A     | 0.0      | A     |  |

#### (6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

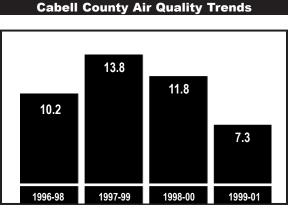
(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

#### American Lung Association of West Virginia

P.O. Box 3980 Charleston, WV 25339-3980 (304) 342-6600 www.alawv.org

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |  |
| Berkeley   | 75,905         | 16,193          | 8,466          | 1,080               | 5,292           | 2,613                 | 857       |  |  |  |  |
| Cabell     | 96,784         | 16,030          | 15,499         | 1,073               | 7,228           | 3,667                 | 1,344     |  |  |  |  |
| Greenbrier | 34,453         | 6,099           | 6,101          | 412                 | 2,512           | 1,325                 | 525       |  |  |  |  |
| Hancock    | 32,667         | 5,591           | 6,017          | 376                 | 2,406           | 1,269                 | 507       |  |  |  |  |
| Kanawha    | 200,073        | 35,201          | 33,036         | 2,358               | 14,681          | 7,599                 | 2,890     |  |  |  |  |
| Monongalia | 81,866         | 12,357          | 8,765          | 825                 | 6,307           | 2,970                 | 873       |  |  |  |  |
| Ohio       | 47,427         | 8,227           | 8,900          | 558                 | 3,472           | 1,821                 | 729       |  |  |  |  |
| Wood       | 87,986         | 16,628          | 13,608         | 1,119               | 6,324           | 3,262                 | 1,221     |  |  |  |  |
| TOTAL      | 657,161        | 116,326         | 100,392        | 7,801               | 48,220          | 24,527                | 8,946     |  |  |  |  |

#### Notes


172

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# WEST VIRGINIA



Each bar marks the Weighted Averages for Cabell County for each period.

#### **Changes for 2003 Report**

- Monitoring data are now available for Berkeley County.
- Greenbrier County's grade improved from an F to a C.
- Cabell County replaced Wood County as having the worst record of high ozone days in the state

|            |        | 199 | 9-2001 |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-    | 1998  |
|------------|--------|-----|--------|----------|-------|----------|-------|----------|-------|----------|-------|
| County     | Orange | Red | Purple | Wgt. Avg | Grade |
| Berkeley   | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Cabell     | 22     | 0   | 0      | 7.3      | F     | 11.8     | F     | 13.8     | F     | 10.2     | F     |
| Greenbrier | 5      | 0   | 0      | 1.7      | С     | 5.2      | F     | 6.7      | F     | 6.7      | F     |
| Hancock    | 10     | 0   | 0      | 3.3      | F     | 4.3      | F     | 4.7      | F     | 3.3      | F     |
| Kanawha    | 16     | 3   | 0      | 6.8      | F     | 10.2     | F     | 9.2      | F     | 4.7      | F     |
| Monongalia | *      | *   | *      | *        | *     | *        | *     | *        | *     | *        | *     |
| Ohio       | 15     | 0   | 0      | 5.0      | F     | 4.7      | F     | 5.0      | F     | 4.0      | F     |
| Wood       | 18     | 1   | 0      | 6.5      | F     | 12.5     | F     | 12.5     | F     | 9.7      | F     |
|            |        |     |        |          |       |          |       |          |       |          |       |

High Ozono Dave

(6) **Emphysema** estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(9) **Wgt. Avg**: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).



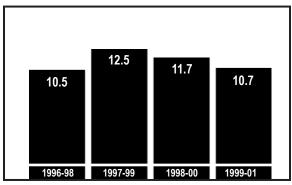
#### American Lung Association of Wisconsin

13100 West Lisbon Road, Suite 700 Brookfield, WI 53005-2508 (262) 703-4200 www.lungusa.org/wisconsin

|             |           | At-             | Risk           | Grou                | ps              |                       |           |
|-------------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|
| County      | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |
| Brown       | 226,778   | 49,140          | 24,214         | 3,270               | 13,464          | 7,629                 | 2,405     |
| Columbia    | 52,468    | 10,772          | 7,567          | 731                 | 3,053           | 1,865                 | 678       |
| Dane        | 426,526   | 80,244          | 39,869         | 5,323               | 26,862          | 14,752                | 4,304     |
| Dodge       | 85,897    | 17,193          | 11,986         | 1,176               | 5,084           | 3,029                 | 1,069     |
| Door        | 27,961    | 4,940           | 5,235          | 341                 | 1,634           | 1,084                 | 444       |
| Florence    | 5,088     | 931             | 889            | 64                  | 296             | 193                   | 77        |
| Fond du Lac | 97,296    | 19,760          | 13,942         | 1,354               | 5,695           | 3,437                 | 1,237     |
| Green       | 33,647    | 7,281           | 4,946          | 493                 | 1,919           | 1,180                 | 436       |
| Jefferson   | 74,021    | 15,270          | 9,359          | 1,032               | 4,357           | 2,590                 | 888       |
| Kenosha     | 149,577   | 33,833          | 17,169         | 2,240               | 8,705           | 5,008                 | 1,639     |
| Kewaunee    | 20,187    | 4,195           | 3,077          | 289                 | 1,160           | 715                   | 267       |
| Manitowoc   | 82,887    | 17,071          | 13,003         | 1,167               | 4,775           | 2,963                 | 1,119     |
| Marathon    | 125,834   | 27,539          | 16,321         | 1,864               | 7,232           | 4,324                 | 1,511     |
| Milwaukee   | 940,164   | 207,587         | 121,685        | 13,705              | 55,058          | 31,981                | 10,893    |
| Oneida      | 36,776    | 6,618           | 6,884          | 454                 | 2,150           | 1,416                 | 578       |

#### Notes

174


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# <u>WISCONSIN</u>

#### Kenosha County Air Quality Trends



Each bar marks the Weighted Averages for Kenosha County for each period.

#### **Changes for 2003 Report**

- Monitoring data are no longer available for Polk County.
- The grades for Brown County, Outagamie County, and Waukesha County dropped from a D to an F.
- The grades for Columbia County and Washington County dropped from a C to a D.
- Oneida County's grade improved from a C to a B.
- St. Croix County's grade dropped from an A to a B.
- Winnebago County's grade dropped from a C to an F.
- Sufficient data are now available to grade Vilas County with a B.
- Sheboygan County replaces Kenosha County as having the worst record of high ozone days in the state.

### **High Ozone Days**

| County      | 1999-2001<br>hty Orange Red Purple |     |        | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |       | 1997-1<br>Wgt. Avg |       | 1996-1998<br>Wgt. Avg Grade |       |  |
|-------------|------------------------------------|-----|--------|----------|-------|---------------------|-------|--------------------|-------|-----------------------------|-------|--|
| county      | Orange                             | Neu | Fulple | wyi. Avy | Grade | wgt. Avg            | Graue | wgi. Avg           | Graue | wgi. Avg                    | Graue |  |
| Brown       | 11                                 | 0   | 0      | 3.7      | F     | 2.7                 | D     | 2.7                | D     | 3.0                         | D     |  |
| Columbia    | 7                                  | 0   | 0      | 2.3      | D     | 2.0                 | С     | 2.0                | С     | 1.3                         | С     |  |
| Dane        | 6                                  | 0   | 0      | 2.0      | С     | 1.7                 | С     | 2.0                | С     | 1.0                         | С     |  |
| Dodge       | 8                                  | 0   | 0      | 2.7      | D     | 2.3                 | D     | 2.7                | D     | 1.7                         | С     |  |
| Door        | 25                                 | 3   | 0      | 9.8      | F     | 8.7                 | F     | 9.8                | F     | 6.8                         | F     |  |
| Florence    | 6                                  | 0   | 0      | 2.0      | С     | 2.0                 | С     | 2.0                | С     | 0.7                         | В     |  |
| Fond du Lac | 9                                  | 0   | 0      | 3.0      | D     | 2.3                 | D     | 2.3                | D     | 1.3                         | С     |  |
| Green       | *                                  | *   | *      | *        | *     | *                   | *     | *                  | *     | *                           | *     |  |
| Jefferson   | 14                                 | 0   | 0      | 4.7      | F     | 4.0                 | F     | 3.3                | F     | 1.3                         | С     |  |
| Kenosha     | 29                                 | 2   | 0      | 10.7     | F     | 11.7                | F     | 12.5               | F     | 10.5                        | F     |  |
| Kewaunee    | 18                                 | 0   | 0      | 6.0      | F     | 5.0                 | F     | 6.0                | F     | 4.2                         | F     |  |
| Manitowoc   | 23                                 | 1   | 0      | 8.2      | F     | 8.7                 | F     | 11.5               | F     | 11.3                        | F     |  |
| Marathon    | 4                                  | 0   | 0      | 1.3      | С     | 1.7                 | С     | 1.3                | С     | 0.3                         | В     |  |
| Milwaukee   | 20                                 | 2   | 0      | 7.7      | F     | 7.3                 | F     | 8.5                | F     | 7.2                         | F     |  |
| Oneida      | 2                                  | 0   | 0      | 0.7      | В     | 1.0                 | С     | 1.0                | С     | 0.3                         | В     |  |
|             |                                    |     |        |          |       |                     |       |                    |       |                             |       |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

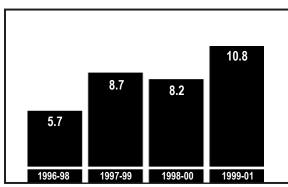


#### American Lung Association of Wisconsin

13100 West Lisbon Road, Suite 700 Brookfield, WI 53005-2508 (262) 703-4200 www.lungusa.org/wisconsin

|            | At-Risk Groups |                 |                |                     |                 |                       |           |  |  |  |
|------------|----------------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|
| County     | Total Pop      | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |
| Outagamie  | 160,971        | 36,784          | 17,585         | 2,462               | 9,315           | 5,328                 | 1,715     |  |  |  |
| Ozaukee    | 82,317         | 17,990          | 10,357         | 1,213               | 4,677           | 2,880                 | 1,019     |  |  |  |
| Polk       | 39,363         | 8,775           | 5,768          | 576                 | 2,182           | 1,294                 | 462       |  |  |  |
| Racine     | 188,831        | 41,956          | 23,233         | 2,818               | 10,862          | 6,440                 | 2,203     |  |  |  |
| Rock       | 152,307        | 33,551          | 19,395         | 2,232               | 8,813           | 5,235                 | 1,807     |  |  |  |
| St. Croix  | 63,155         | 14,468          | 6,221          | 1,591               | 3,644           | 2,080                 | 651       |  |  |  |
| Sauk       | 55,225         | 11,827          | 7,993          | 974                 | 3,180           | 1,941                 | 709       |  |  |  |
| Sheboygan  | 112,646        | 23,521          | 15,732         | 577                 | 6,572           | 3,949                 | 1,408     |  |  |  |
| Vernon     | 28,056         | 6,248           | 4,769          | 426                 | 1,548           | 997                   | 398       |  |  |  |
| Vilas      | 21,033         | 3,501           | 4,794          | 240                 | 1,223           | 854                   | 380       |  |  |  |
| Walworth   | 93,759         | 18,690          | 11,934         | 1,253               | 5,644           | 3,290                 | 1,109     |  |  |  |
| Washington | 117,493        | 25,881          | 13,212         | 1,733               | 6,809           | 4,004                 | 1,326     |  |  |  |
| Waukesha   | 360,767        | 77,901          | 43,434         | 5,248               | 20,764          | 12,545                | 4,319     |  |  |  |
| Winnebago  | 156,763        | 30,760          | 19,663         | 2,065               | 9,509           | 5,503                 | 1,833     |  |  |  |
| TOTAL      | 4,017,793      | 854,227         | 500,236        | 56,909              | 236,189         | 138,506               | 46,886    |  |  |  |

#### Notes


(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.(3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).

# WISCONSIN

#### Sheboygan County Air Quality Trends



Each bar marks the Weighted Averages for Shegoygan County for each period.

#### Changes for 2003 Report

- Monitoring data are no longer available for Polk County.
- The grades for Brown County, Outagamie County, and Waukesha County dropped from a D to an F.
- The grades for Columbia County and Washington County dropped from a C to a D.
- Oneida County's grade improved from a C to a B.
- St. Croix County's grade dropped from an A to a B.
- Winnebago County's grade dropped from a C to an F.
- Sufficient data are now available to grade Vilas County with a B.
- Sheboygan County replaces Kenosha County as having the worst record of high ozone days in the state.

### **High Ozone Days**

|            |        | 1999-2001 |        |          |       | 1998-20  | 000   | 1997-1   | 999   | 1996-1   | 1998  |  |
|------------|--------|-----------|--------|----------|-------|----------|-------|----------|-------|----------|-------|--|
| County     | Orange | Red       | Purple | Wgt. Avg | Grade |  |
| Outagamie  | 10     | 0         | 0      | 3.3      | F     | 2.3      | D     | 3.0      | D     | 1.3      | С     |  |
|            |        |           |        |          |       |          |       |          |       |          |       |  |
| Ozaukee    | 29     | 2         | 0      | 10.7     | F     | 10.3     | F     | 10.3     | F     | 6.8      | F     |  |
| Polk       | *      | *         | *      | *        | *     | *        | *     | *        | *     | 0.3      | В     |  |
| Racine     | 12     | 1         | 0      | 4.5      | F     | 3.7      | F     | 5.2      | F     | 4.5      | F     |  |
| Rock       | 14     | 0         | 0      | 4.7      | F     | 5.0      | F     | 5.3      | F     | 4.0      | F     |  |
| St. Croix  | 1      | 0         | 0      | 0.3      | В     | 0.0      | А     | 0.0      | А     | 0.0      | А     |  |
| Sauk       | 4      | 0         | 0      | 1.3      | С     | 1.7      | С     | 1.7      | С     | 0.3      | В     |  |
| Sheboygan  | 25     | 5         | 0      | 10.8     | F     | 8.2      | F     | 8.7      | F     | 5.7      | F     |  |
| Vernon     | 1      | 0         | 0      | 0.3      | В     | 0.7      | В     | 0.7      | В     | 0.3      | В     |  |
| Vilas      | 2      | 0         | 0      | 0.7      | В     | *        | *     | *        | *     | *        | *     |  |
| Walworth   | 10     | 1         | 0      | 3.8      | F     | 3.5      | F     | 4.2      | F     | 2.3      | D     |  |
| Washington | 8      | 0         | 0      | 2.7      | D     | 2.0      | С     | 2.7      | D     | 1.7      | С     |  |
| Waukesha   | 10     | 0         | 0      | 3.3      | F     | 2.7      | D     | 3.7      | F     | 2.0      | С     |  |
| Winnebago  | 10     | 0         | 0      | 3.3      | F     | 2.0      | С     | 2.3      | D     | 0.7      | В     |  |
|            |        |           |        |          |       |          |       |          |       |          |       |  |
|            |        |           |        |          |       |          |       |          |       |          |       |  |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(8) Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

(9) Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.



### American Lung Association of the Northern Rockies

825 Helena Avenue Helena, MT 59601-3459 (406) 442-6556 www.lungusa.org/northernrockies

|        |           | At-Risk Groups  |                |                     |                 |                       |           |  |  |  |
|--------|-----------|-----------------|----------------|---------------------|-----------------|-----------------------|-----------|--|--|--|
| County | Total Pop | 14 and<br>Under | 65 and<br>Over | Pediatric<br>Asthma | Adult<br>Asthma | Chronic<br>Bronchitis | Emphysema |  |  |  |
| Teton  | 18,251    | 2,985           | 1,264          | 201                 | 1,227           | 649                   | 174       |  |  |  |
| TOTAL  | 18,251    | 2,985           | 1,264          | 201                 | 1,227           | 649                   | 174       |  |  |  |

#### Notes

178

(1) Total represents the at-risk populations in counties/cities with ozone monitors- it does not represent the entire state's sensitive populations.

(2) Those 14 & under and 65 & over are extra sensitive to ozone and are therefore included. They should not be used as population denominators for disease estimates.
 (3) Pediatric asthma estimates are for those under 18 years of age and represent the estimated number of people who had an asthma attack during 2000 based on national rates (NHIS) applied to county population estimates (US Census).

(4) Adult asthma estimates are for those 18 years and older and represent the estimated number of people who had asthma during 2001 based on state rates (BRFSS) applied to county population estimates (US Census).



#### **Changes for 2003 Report**

There were no changes in grades or monitors from the 2002 report.

| 0-01     |       |                     |     |                    |   |                    |   |   |
|----------|-------|---------------------|-----|--------------------|---|--------------------|---|---|
| gh       | Oze   | one                 | Day | ys                 |   |                    |   | ł |
| Vgt. Avg | Grade | 1998-20<br>Wgt. Avg |     | 1997-′<br>Wgt. Avg |   | 1996-1<br>Wgt. Avg |   |   |
| 0.0      | А     | 0.0                 | А   | 0.0                | Α | 0.0                | А |   |

| High Ozone Days |        |            |                  |          |       |                     |   |                    |   |                                |   |
|-----------------|--------|------------|------------------|----------|-------|---------------------|---|--------------------|---|--------------------------------|---|
| County          | Orange | 199<br>Red | 9-2001<br>Purple | Wgt. Avg | Grade | 1998-20<br>Wgt. Avg |   | 1997-′<br>Wgt. Avg |   | 1996- <sup>-</sup><br>Wgt. Avg |   |
| Teton           | 0      | 0          | 0                | 0.0      | A     | 0.0                 | А | 0.0                | А | 0.0                            | А |
|                 |        |            |                  |          |       |                     |   |                    |   |                                |   |
|                 |        |            |                  |          |       |                     |   |                    |   |                                |   |

(6) Emphysema estimates are for adults 18 and over who have been diagnosed with this disease within their lifetime based on national rates (NHIS) applied to county population estimates (US Census).

(7) Adding across rows does not produce valid estimates, i.e. summing pediatric and adult asthma and/or emphysema and chronic bronchitis.

(10) \* indicates incomplete monitoring data for all three years. Therefore, those counties are excluded from the grade analysis.

<sup>(8)</sup> Orange: Unhealthy For Sensitive Groups (0.085-0.104 ppm ozone), Red: Unhealthy (0.105-0.124 ppm ozone), and Purple: Very Unhealthy (0.125-0.374 ppm ozone).

<sup>(9)</sup> Wgt. Avg: The weighted average was derived by adding the three years of individual level data (1999-2001), multiplying the sums of each level by the assigned standard weights, i.e. 1=orange, 1.5=red, 2.0=purple, and calculating the average.

For nearly 100 years, the American Lung Association and Lung Association affiliates throughout the United States have worked together in the fight against lung disease.

We need your support to fight lung disease, the third leading cause of death in the U.S. Call your local American Lung Association to find out how you can help.

### Call I-800-LUNG-USA (I-800-586-4872)

www.lungusa.org

When You Can't Breathe, Nothing Else Matters®

